
MATH 3423: Statistical Inference

HU-HTAKM
Website: https://htakm.github.io/htakm_test/

Last major change: December 7, 2024
Last small update: September 16, 2025

https://htakm.github.io/htakm_test/


2

This is a lecture note for MATH 3423, created by me. Please note that some notations differ slightly from those
used in the course, as I have adjusted them for greater clarity and to match my own preferences. For example:

Name My notation Dr. YU Chi Wai’s notation
Transpose AT A′

Set of real numbers R R
Fisher Information IX(θ) IX(θ)

Convergence in distribution Xn
D−→ X Xn

d−→ X
Probability P P

Expected value E E or EX

Indicator function 1A IA
chisq-value χ2

α,n χ2
α(n)

t-value tα,n tα(n)
f-value fα,(n,m) Fα(n,m) or fα(n,m)

Some things to note about:

1. Simply following all the examples in this lecture note may not be sufficient to excel in Dr. YU’s exams, but it
will help you understand the material (according to an anonymous reader who got A+ in this course (wtf)).

2. Some topics covered here may or may not be included in the exam. This lecture note also contains material
from MATH 2421/2431 and some supplementary notes that may not be tested.

3. If you are preparing for Dr. YU’s exams, please use his notation instead of mine.

4. There may be typos in these notes. Please read with caution.
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Chapter 1

Preliminary

Statistical inference is the process of investigating how to use the information from the data and using data to make
inferences about the distribution of a random variable of interest. In MATH 3423, we focus on two core concepts
of statistical inference: point estimation and hypothesis testing.

1.1 Random variables

In a particular event, it usually results in the outcome ω. All possible outcomes are grouped into a sample space
Ω. To perform numerical analysis from the sample space, we map these outcomes to numerical values, which we
define as random variables.

Definition 1.1. Given a sample space Ω:

1. A random variable X is a function X : Ω → R that maps outcomes in the sample space Ω to real
numbers.

2. The probability of X taking a value in a set A is defined as:

P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}).

3. The cumulative distribution function (CDF) of X is given by:

FX(x) = P(X ≤ x).

4. The random variable X is discrete if it has a probability mass function (PMF) pX defined as:

pX(x) = P(X = x).

5. The random variable X is continuous if its CDF can be expressed using a probability density function
(PDF) fX as:

FX(x) =

∫ x

−∞
fX(u) du.

Definition 1.2. Two random variables X and Y are independent if either:

fX,Y (x, y) = fX(x)fY (y) or FX,Y (x, y) = FX(x)FY (y).

This theorem is very important and will be used frequently later.

Theorem 1.3. If X and Y are independent, then f(X) and g(Y ) are independent for any functions f and g.

5
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1.2 Random sample and parametric distribution

To make statistical inferences about the distribution of the random variable X, we need to collect a sample of data.

Definition 1.4. Denote the first observation by X1, the second by X2, and so on. A set of random variables
{X1, · · · , Xn} is called a random sample of size n from the common distribution of X with a PMF pX(x) or
PDF fX(x) if they are independent and identically distributed (i.i.d.).

Remark 1.4.1. The random variables X1, · · · , Xn are assumed to be observable, with known actual values
x1, · · · , xn, respectively.

Under the random sampling setting, the following lemma is straightforward.

Lemma 1.5. Given a random sample {X1, · · · , Xn} from a common distribution X:

1. If the random sample is discrete with a common PMF pX(x), then the joint PMF of the random sample
is:

pX1,··· ,Xn(x1, · · · , xn) =

n∏
i=1

pXi(xi).

2. If the random sample is continuous with a common PDF fX(x), then the joint PDF of the random sample
is:

fX1,··· ,Xn
(x1, · · · , xn) =

n∏
i=1

fXi
(xi).

In practice, the underlying distribution of X is assumed to be unknown or partially known. In most situations, it
is reasonable to assume that the form of the PMF pX or PDF fX of the distribution is known but contains some
unknown parameters θ.

Definition 1.6. A parametric distribution is a distribution where the PMF pX or PDF fX contains some
unknown parameters θ. Such a PMF or PDF is said to be parametric.

Remark 1.6.1. Instead of assuming parametric distributions for the data, we may assume that the form of
the distribution is unknown but has certain properties. For example, a distribution may be continuous. Such
a distribution is called a non-parametric distribution, and the corresponding statistical method is called a
non-parametric statistical approach. If parameters are involved but the form of the distribution is unknown,
the distribution is called a semi-parametric distribution, and the corresponding method is called a semi-
parametric statistical approach.

Example 1.1. Data are often assumed to follow a normal distribution with mean µ and variance σ2, where the
parameter:

θ =

(
µ
σ2

)
is unknown but fixed.

Lemma 1.7. Given a random sample {X1, · · · , Xn} from a common distribution X:

1. If the random sample is discrete with a common parametric PMF pX(x|θ), then the joint PMF of the
random sample is:

pX1,··· ,Xn
(x1, · · · , xn|θ) =

n∏
i=1

pX(xi|θ).

2. If the random sample is continuous with a common parametric PDF pX(x|θ), then the joint PDF of the
random sample is:

fX1,··· ,Xn
(x1, · · · , xn|θ) =

n∏
i=1

fX(xi|θ).
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Under the parametric setting, the uncertainty of the distribution is reduced to the uncertainty of its parameters.
One of the central problems in statistics is determining which function of the data is the best estimator for θ.

Definition 1.8. Let X = (X1 · · · Xn)
T be a random vector.

1. If T (·) is a real-valued or vector-valued function such that for all X ∈ Ω, T (X) does not contain any
unknown parameters, then T (X) is called a statistic.

2. If we use the statistic T (X) to estimate an unknown parameter θ, then T (X) and T (x) are called an
estimator and an estimate of θ, respectively, where x is an observed value of X.

Remark 1.8.1. We usually denote an estimator of θ by θ̂(X) or simply θ̂.

Remark 1.8.2. Since T (X) is also random, it has a distribution called the sampling distribution.

1.3 Moments

The population moments of a distribution play a significant role in both theoretical and applied statistics. Let us
first define what a moment is.

Definition 1.9. Given a random variable X:

1. If the random variable is discrete with a PMF pX(x), the expectation or population mean of X is
defined as:

µ = E(X) =
∑
x

xpX(x).

2. If the random variable is continuous with a PDF fX(x), the expectation or population mean of X is
defined as:

µ = E(X) =

∫ ∞

−∞
xfX(x) dx.

Remark 1.9.1. The expression E[(X−a)k] can be simplified to E(X−a)k. However, it should not be confused
with [E(X − a)]k.

Lemma 1.10. (Linearity of expectation) Given a set of random variables {X1, · · · , Xn}, for any constants
ai, the following holds:

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

ai E(Xi).

Lemma 1.11. Given a set of independent random variables, the following holds:

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E(Xi).

Definition 1.12. Given a random variable X, the population variance of X is defined as:

σ2 = Var(X) = E[(X − E(X))2] = E(X2)− [E(X)]2.

Lemma 1.13. Given a set of independent random variables {X1, · · · , Xn}, for any constants ai, the following
holds:

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2i Var(Xi).

Definition 1.14. Given two random variables X and Y , the covariance of X and Y is defined as:

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y ).
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From these definitions, we can generalize the concept to higher-order population moments.

Definition 1.15. For each positive integer k:

1. The k-th population moment of X about 0, denoted by µ′
k, is defined as:

µ′
k = E(Xk),

if the expectation exists.

2. The k-th population central moment of X, denoted by µk, is defined as:

µk = E[(X − µ)k],

if the expectation exists.

Remark 1.15.1. Do not confuse the population mean µ with the k-th population central moment µk!

Example 1.2. Some useful population moments have specific terminologies:

1. Skewness: µ3, which measures asymmetry or skewness.

(a) If µ3 < 0, the distribution is left-skewed (the tail is on the left).

(b) If µ3 > 0, the distribution is right-skewed (the tail is on the right).

(c) If µ3 = 0, the distribution is symmetric.

The ratio µ3

σ3 is called the coefficient of skewness.

2. Kurtosis: µ4, which measures the degree of peakedness or flatness of a distribution near its center. The
term µ4

σ4 − 3 is called the coefficient of kurtosis.

(a) If µ4

σ4 − 3 > 0, the distribution has a sharper peak than the normal distribution.

(b) If µ4

σ4 − 3 < 0, the distribution has a flatter peak than the normal distribution.

Sample moments are often used to estimate population moments.

Definition 1.16. Let X1, · · · , Xn be a random sample of size n. For each positive integer k:

1. The k-th sample moment about 0, denoted by Xk, is defined as:

Xk =
1

n

n∑
i=1

Xk
i .

When k = 1, X is called the sample mean of X.

2. The k-th sample moment about X, denoted by Sk
n, is defined as:

Sk
n =

1

n

n∑
i=1

(Xi −X)k.

Example 1.3. When k = 2, S2
n is called the sample variance. However, we typically use an alternative version

of the sample variance, denoted by S2
n−1, which is defined as:

S2
n−1 =

1

n− 1

n∑
i=1

(Xi −X)2.

This version is preferred because S2
n−1 is an unbiased estimator, whereas S2

n is not.
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Lemma 1.17. Let {X1, · · · , Xn} be a random sample of size n. Then:

E(Xk) = µ′
k,

if µ′
k exists. Additionally:

Var(Xk) =
1

n

[
µ′
2k − (µ′

k)
2
]
.

Proof.
Since X1, · · · , Xn have the same distribution:

E(Xk
1 ) = · · · = E(Xk

n) = E(Xk) = µ′
k.

Therefore:

E(Xk) = E

(
1

n

n∑
i=1

Xk
i

)
=

1

n

n∑
i=1

E(Xk
i ) = µ′

k.

Since Xk
1 , · · · , Xk

n are independent:

Var(Xk) = Var

(
1

n

n∑
i=1

Xk
i

)
=

1

n2

n∑
i=1

Var(Xk
i ) =

1

n2

n∑
i=1

[
E(X2k

i )− [E(Xk
i )]

2
]
=

1

n

[
µ′
2k − (µ′

k)
2
]
.

1.4 Conditional distribution

Sometimes, we deal with cases where certain information is given.

Definition 1.18. Suppose X and Y are two random variables. The conditional distribution function of Y
given X = x, for any x such that the PMF pX(x) > 0 or the PDF fX(x) > 0, is defined as:

FY |X(y|x) = P(Y ≤ y|X = x).

The conditional PDF/PMF of Y given X = x, for any x such that the PMF pX(x) > 0 or the PDF fX(x) > 0,
is defined as: {

pY |X(y|x) = pX,Y (x,y)
pX(x) , Discrete case,

fY |X(y|x) = fX,Y (x,y)
fX(x) , Continuous case.

The conditional distribution has a corresponding expectation.

Definition 1.19. Suppose X and Y are two random variables. The conditional expectation of Y given
X = x, for any x such that the PMF pX(x) > 0 or the PDF fX(x) > 0, is defined as:

E(Y |X = x) =

{∑
y ypY |X(y|x), Discrete case,∫∞

−∞ yfY |X(y|x) dy, Continuous case.

Remark 1.19.1. E(Y |X = x) is a function of x. Similarly, E(Y |X) is a function of X.

Example 1.4. Suppose the joint PDF of X and Y is given by:

fX,Y (x, y) =

{
1
y e

− x
y , x > 0, y > 0,

0, Otherwise.

We want to compute E(X|Y = y). We find that:

fY (y) =

∫ ∞

0

fX,Y (x, y) dx =

∫ ∞

0

1

y
e−

x
y dx = 1, fX|Y (x|y) =

fX,Y (x, y)

fY (y)
=

1

y
e−

x
y .

We see that (X|Y = y) ∼ Exp
(

1
y

)
. Therefore, E(X|Y = y) = y.



10 CHAPTER 1. PRELIMINARY

Conditional expectation has the following properties.

Lemma 1.20. Suppose X, Y , and Z are three random variables. The conditional expectation satisfies the
following properties:

1. E(aY + bZ|X) = aE(Y |X) + bE(Z|X) for a, b ∈ R.

2. E(Y |X) ≥ 0 if Y ≥ 0.

3. If X and Y are independent, then E(Y |X) = E(Y ).

Proof.
The proof for the discrete case is similar to the continuous case.

1.

E(aY + bZ|X) =

∫ ∞

−∞

∫ ∞

−∞
(ay + bz)fY,Z|X(y, z|X) dy dz

= a

∫ ∞

−∞

∫ ∞

−∞
yfY,Z|X(y, z|X) dy dz + b

∫ ∞

−∞

∫ ∞

−∞
zfY,Z|X(y, z|X) dy dz

= a

∫ ∞

−∞
yfY |X(y|X) dy + b

∫ ∞

−∞
zfZ|X(z|X) dz = aE(Y |X) + bE(Z|X).

2. If Y ≥ 0, then since fY |X(y|x) ≥ 0 for any x such that fX(x) > 0:

E(Y |X) =

∫ ∞

0

yfY |X(y|X) dy ≥ 0.

3. If X and Y are independent, then:

E(Y |X) =

∫ ∞

−∞
yfY |X(y|X) dy =

∫ ∞

−∞
yfY (y) dy = E(Y ).

If E(Y |X) is a function of X, what is its expectation?

Theorem 1.21. (Law of total expectation) Given two random variables X and Y , we have:

E(Y ) = E(E(Y |X)),

if both expectations exist.

Proof.
We prove this for the continuous case. The discrete case works similarly.

E(E(Y |X)) =

∫ ∞

−∞
E(Y |X = x)fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
yfY |X(y|x)fX(x) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y) dx dy

=

∫ ∞

−∞
yfY (y) dy = E(Y ).

The following theorem generalizes the Law of Total Expectation. We omit the proof.

Lemma 1.22. Given two random variables X and Y , for any function g, we have:

E(E(Y |X)g(X)) = E(Y g(X)),

if both expectations exist.
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Similarly, we define conditional variance.

Definition 1.23. Given two random variables X and Y , the conditional variance of Y given X is defined as:

Var(Y |X) = E
[
(Y − E(Y |X))2|X

]
.

Lemma 1.24. Given two random variables X and Y , we have:

Var(Y |X) = E(Y 2|X)− [E(Y |X)]2.

Proof.
By Lemma 1.20 and Lemma 1.22,

Var(Y |X) = E
[
(Y − E(Y |X))2|X

]
= E(Y 2|X)− 2E(Y E(Y |X)|X) + E((E(Y |X))2|X)

= E(Y 2|X)− [E(Y |X)]2. (E(Y |X) is a function of X)

We have the Law of Total Variance.

Theorem 1.25. (Law of total variance) Given two random variables X and Y , we have:

Var(Y ) = E[Var(Y |X)] + Var(E(Y |X)),

if the expectations and variances exist.

Proof.
By Lemma 1.24 and the Law of Total Expectation,

E[Var(Y |X)] + Var(E(Y |X)) = E[E(Y 2|X)]− E[E(Y |X)]2 + E[E(Y |X)]2 − [E(E(Y |X))]
2

= E(Y 2)− [E(Y )]2 = Var(Y ).

1.5 Commonly used distribution

The indicator function is highly important and will be used later.

Definition 1.26. The indicator function of a set A is a function 1A defined as:

1A(x) =

{
1, x ∈ A,

0, x ̸∈ A.

Let us recall some useful distributions.

Example 1.5. (Bernoulli distribution) X ∼ Bern(p)
A random variable X is a Bernoulli random variable with parameter p ∈ [0, 1] if it has the PMF:

pX(x) =

{
px(1− p)1−x, x ∈ {0, 1},
0, Otherwise.

E(X) = p, Var(X) = p(1− p).

Example 1.6. (Binomial distribution) X ∼ Bin(n, p)
A random variable X is a Binomial random variable with parameters n ∈ N and p ∈ [0, 1] if it has the PMF for
x = 0, · · · , n:

pX(x) =

(
n

x

)
px(1− p)n−x, E(X) = np, Var(X) = np(1− p).
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Example 1.7. (Geometric distribution) X ∼ Geom(p)
A random variable X is geometric with parameter p ∈ [0, 1] if it has the PMF for x = 1, 2, · · · :

pX(x) = p(1− p)x−1, E(X) =
1

p
, Var(X) =

1− p

p2
.

Example 1.8. (Poisson distribution) X ∼ Poisson(λ)
A random variable X is a Poisson random variable with parameter λ if it has the PMF for x = 0, 1, · · · :

pX(x) =
λx

x!
e−λ, E(X) = λ, Var(X) = λ.

Example 1.9. (Negative Binomial distribution) X ∼ NBin(r, p)
Assume X1, · · · , Xr are independent and Xi ∼ Geom(p) for i = 1, · · · , r. Let Y =

∑r
i=1 Xi. The random

variable Y is negative Binomial with parameters r > 0 and p ∈ [0, 1] if for x > r:

pX(x) =

(
x− 1

r − 1

)
(1− p)x−rpr, E(X) =

r

p
, Var(X) =

r(1− p)

p2
.

Example 1.10. (Cauchy distribution) X ∼ Cauchy(θ)
A random variable X is a Cauchy random variable with parameter θ if it has the PDF:

fX(x) =
1

π(1 + (x− θ)2)
, E(X) DNE, Var(X) DNE.

Example 1.11. (Uniform distribution) X ∼ U[a, b]
A random variable X is uniform if, given a < b, it has the PDF:

fX(x) =

{
1

b−a , x ∈ [a, b],

0, Otherwise.
E(X) =

a+ b

2
, Var(X) =

(b− a)2

12
.

Example 1.12. (Exponential distribution) X ∼ Exp(λ)
A random variable X is exponential with parameter λ if it has the PDF:

fX(x) =

{
λe−λx, x ≥ 0,

0, x < 0.
E(X) =

1

λ
, Var(X) =

1

λ2
.

Example 1.13. (Normal distribution / Gaussian distribution) X ∼ N(µ, σ2)
A random variable X is normal if it has two parameters µ and σ2, and its PDF and CDF are:

fX(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, FX(x) =

∫ x

−∞
fX(u) du, E(X) = µ, Var(X) = σ2.

A random variable Z is standard normal if it is normal with µ = 0 and σ2 = 1 (Z ∼ N(0, 1)):

fZ(z) = ϕ(z) =
1√
2π

exp

(
−z2

2

)
, FZ(z) = Φ(z) =

∫ z

−∞
ϕ(u) du, E(Z) = 0, Var(Z) = 1.

We define zα by:
P(Z ≥ zα) = α.
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Example 1.14. (Gamma distribution) X ∼ Gamma(α, β)
A random variable X is a gamma random variable with parameters α > 0 and β > 0 if its PDF is:

fX(x) =

{
1

Γ(α)β
αxα−1e−βx, x ≥ 0,

0, Otherwise.
E(X) =

α

β
, Var(X) =

α

β2
.

Remark 1.26.1. For any z, the gamma function Γ(z) has the following properties:

1. Γ(z + 1) = zΓ(z). If z is a positive integer, then Γ(z) = (z − 1)!.

2. If ℜ(z) > 0, then Γ(z) =
∫∞
0

tz−1e−t dt.

3. Γ
(
1
2

)
=

√
π.

Example 1.15. (Beta distribution) X ∼ Beta(α, β)
A random variable X is a beta random variable with parameters α > 0 and β > 0 if its PDF is:

fX(x) =

{
xα−1(1−x)β−1

B(α,β) , x ∈ (0, 1),

0, Otherwise.
E(X) =

α

α+ β
, Var(X) =

αβ

(α+ β)2(α+ β + 1)
.

Remark 1.26.2. For any z1, z2, the beta function B(z1, z2) has the following properties:

1. B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

.

2. B(z1, z2) =
∫ 1

0
tz1−1(1− t)z2−1 dt.

We have some more distributions that are associated with the normal distribution. For example, the Chi-squared
distribution, which is a special case of the gamma distribution.

Example 1.16. (Chi-squared distribution) Y ∼ χ2(n)
Assume that X1, X2, · · · , Xn are independent and Xi ∼ N(0, 1) for i = 1, · · · , n. Let Y =

∑n
i=1 X

2
i . The random

variable Y has a χ2-distribution with n degrees of freedom if:

fY (x) =

{
1

Γ(n
2 )

2−
n
2 x

n
2 −1e−

x
2 , x > 0,

0, Otherwise.
E(Y ) = n, Var(Y ) = 2n.

We define χ2
α,n by:

P(Y ≥ χ2
α,n) = α.

Theorem 1.27. If a random variable X ∼ N(µ, σ2), where σ2 > 0, then the random variable V = (X−µ)2

σ2 ∼
χ2(1).

Proof.
By the properties of the normal distribution, we get that:

X − µ

σ
∼ N(0, 1).

Therefore, by the definition of the chi-squared distribution,

V =

(
X − µ

σ

)2

∼ χ2(1).

Theorem 1.28. Given a set of random variables {X1, · · · , Xk}. Let Y =
∑k

i=1 Xi and Xi ∼ χ2(ri) for all
i = 1, · · · , k. If they are independent, then Y ∼ χ2(r1 + · · ·+ rk).

Proof.
It suffices to prove that if Z1 ∼ χ2(n1) and Z2 ∼ χ2(n2), then Z1 + Z2 ∼ χ2(n1 + n2). By repeatedly applying
the relation for two random variables, one can easily derive the desired relation for k random variables. From
the definition, Z1 = X2

11 + · · · + X2
1n1

and Z2 = X2
21 + · · · + X2

2n2
, where X1i ∼ N(0, 1) and X2j ∼ N(0, 1) for

i = 1, · · · , n1 and j = 1, · · · , n2. Therefore,

Z1 + Z2 = X2
11 + · · ·+X2

1n1
+X2

21 + · · ·+X2
2n2

∼ χ2(n1 + n2).
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Theorem 1.29. If {X1, · · · , Xn} is a random sample of size n > 1 of a random variable X ∼ N(µ, σ2), then we
have:

1. The sample mean X ∼ N
(
µ, σ2

n

)
.

2. The sample mean X and the sample variance S2
n−1 are independent.

3.
(n− 1)S2

n−1

σ2
=

nS2
n

σ2
=

1

σ2

n∑
i=1

(Xi −X)2 ∼ χ2(n− 1).

Proof.

1. From the definition,

X =
1

n

n∑
i=1

Xi.

Since Xi ∼ N(µ, σ2) for i = 1, · · · , n, we find that X ∼ N
(
µ, σ2

n

)
.

2. Let X = (X1 · · · Xn)
T . We may find that:

X
X1 −X
X2 −X

...
Xn −X

 =


1
nX1 +

1
nX2 + · · ·+ 1

nXn(
1− 1

n

)
X1 − 1

nX2 − · · · − 1
nXn

− 1
nX1 +

(
1− 1

n

)
X2 − · · · − 1

nXn

...
− 1

nX1 − 1
nX2 − · · ·+

(
1− 1

n

)
Xn

 = AX, A =



1
n

1
n . . . 1

n
1− 1

n − 1
n . . . − 1

n

− 1
n 1− 1

n

. . .
...

...
. . .

. . . − 1
n

− 1
n . . . − 1

n 1− 1
n

 .

By Lemma 1.47, we have AX ∼ Nn+1(Aµ,Aσ2In×nA
T
), where µ = (µ · · · µ)T .

Let X∗ = (X1 −X · · · Xn −X)T and Σ∗ be the variance-covariance matrix of X∗. We can notice that:

Aσ2In×nA
T
=

(
Var(X) cov(X∗, X)

cov(X∗, X) Σ∗

)
.

Since Xi are independent for all i,

cov(Xi −X,X) = cov(Xi, X)−Var(X) =
1

n
Var(Xi)−

σ2

n
= 0.

Therefore, we find that cov(X∗, X) = 0. By Lemma 1.48, X and X∗ are independent.
Since S2

n−1 is a function of X∗, we conclude that X and S2
n−1 are independent.

3. We have:
1

σ2

n∑
i=1

(Xi −X)2 =
1

σ2

n∑
i=1

(Xi − µ+ µ−X)2 =
1

σ2

n∑
i=1

(Xi − µ)2 − n(X − µ)2

σ2
.

Let U =
∑n

i=1

(
Xi−µ

σ

)2
and V =

(√
n(X−µ)

σ

)2
. The distribution we are finding is U − V .

From the definition, we know that U ∼ χ2(n). From Theorem 1.27, we find that V ∼ χ2(1).
From Part 2, since functions of X∗ and X are independent,

MU−V (t) =
MU (t)

MV (t)
=

(1− 2t)−
n
2

(1− 2t)−
1
2

= (1− 2t)−
n−1
2 .

Therefore, we conclude that:

1

σ2

n∑
i=1

(Xi −X)2 ∼ χ2(n− 1).

Remark 1.29.1. From the same proof of the above theorem part 2, we can also find that X and S2
n are

independent.
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Example 1.17. (Student’s t-distribution) T ∼ t(r)
Assume that X ∼ N(0, 1) and Y ∼ χ2(r). Let:

T =
X√
Y
r

.

Then T has a t-distribution with r degrees of freedom, and:

fT (t) =
Γ
(
r+1
2

)
√
rπΓ

(
r
2

) (1 + t2

r

)− r+1
2

, E(T ) =

{
Undefined, r ≤ 1,

0, r > 1,
Var(T ) =


Undefined, r ≤ 1,

∞, 1 < r ≤ 2,
r

r−2 , r > 2.

We define tα,r by:
P(T ≥ tα,r) = α.

Remark 1.29.2. As r → ∞, T → N(0, 1) by the Central Limit Theorem (CLT).

Remark 1.29.3. If we fix Y = y, then we find that T ∼ N
(
0, r

y

)
.

The t-distribution has the following properties.

Theorem 1.30. If {X1, · · · , Xn} is a random sample of size n > 1 of a random variable X ∼ N(µ, σ2), then:

√
n(X − µ)

Sn−1
∼ t(n− 1).

Proof.
From Theorem 1.29, X and S2

n−1 are independent, and:

√
n(X − µ)

σ
∼ N(0, 1),

(n− 1)S2
n−1

σ2
∼ χ2(n− 1).

Therefore, from the definition:

√
n(X − µ)

Sn−1
=

√
n(X−µ)

σ√
1

n−1

(
(n−1)S2

n−1

σ2

) ∼ t(n− 1).

Example 1.18. Assume that we want to find the 95% confidence interval of µ without knowing the population
variance σ2. Then we find:

0.95 = P
(
−t0.025,n−1 ≤

√
n(X − µ)

Sn−1
≤ t0.025,n−1

)
= P

(
X − t0.025,n−1

Sn−1√
n

≤ µ ≤ X + t0.025,n−1
Sn−1√

n

)
.

Therefore, the 95% confidence interval is:(
x− t0.025,n−1

sn−1√
n

, x+ t0.025,n−1
sn−1√

n

)
.

Usually, when n > 30, t0.025,n−1 ≈ z0.025. Therefore, the 95% confidence interval becomes:(
x− z0.025

sn−1√
n

, x+ z0.025
sn−1√

n

)
.
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Example 1.19. (F distribution) F ∼ F (r1, r2)
Assume that X and Y are independent random variables with X ∼ χ2(r1) and Y ∼ χ2(r2). Let:

F =
X
r1
Y
r2

.

Then F has an F-distribution with r1 and r2 degrees of freedom, and:

fF (w) =
Γ
(
r1+r2

2

)
Γ
(
r1
2

)
Γ
(
r2
2

) (r1
r2

) r1
2

w
r1
2 −1

(
1 +

r1w

r2

)− r1+r2
2

,

where 0 < w < ∞. We define fα,(r1,r2) by:

P(F ≥ fα,(r1,r2)) = α.

Lemma 1.31. Let U ∼ F (r1, r2). The F-distribution has the following properties:

1. 1
U ∼ F (r2, r1).

2. If fα,(r1,r2) is defined by P(U ≥ fα,(r1,r2)) = α, then:

1

fα,(r1,r2)
= f1−α,(r2,r1).

Proof.

1. By definition:

U =
X
r1
Y
r2

,

where X ∼ χ2(r1) and Y ∼ χ2(r2). Therefore:

1

U
=

Y
r2
X
r1

∼ F (r2, r1).

2. With P(U ≥ fα,(r1,r2)) = α, since fU (w) is only defined for w > 0, we have:

P
(

1

U
≤ 1

fα,(r1,r2)

)
= α,

P
(

1

U
>

1

fα,(r1,r2)

)
= 1− α.

From Part 1, we find that 1
U ∼ F (r2, r1). Therefore:

P
(

1

U
≥ f1−α,(r2,r1)

)
= 1− α.

Thus, we conclude that:
1

fα,(r1,r2)
= f1−α,(r2,r1).
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Example 1.20. Assume that we want to compare two populations. Let X1 ∼ N(µ1, σ
2
1) represent the random

variable of the first population, and X2 ∼ N(µ2, σ
2
2) represent the random variable of the second population. We

aim to find a confidence interval for their ratio of variances
σ2
1

σ2
2
.

Let {X11, · · · , X1n} be a random sample of size n from X1, and {X21, · · · , X2m} be a random sample of size m
from X2. We find that:

(n− 1)S2
n−1,1

σ2
1

∼ χ2(n− 1),
(m− 1)S2

m−1,2

σ2
2

∼ χ2(m− 1).

We also find that Sn−1,1 and Sm−1,2 are independent since they are from different populations. Therefore, we
have:

σ2
1

σ2
2

(
S2
m−1,2

S2
n−1,1

)
=

1
m−1

(
(m−1)S2

m−1,2

σ2
2

)
1

n−1

(
(n−1)S2

n−1,1

σ2
1

) ∼ F (m− 1, n− 1).

Then we can find the 95% confidence interval as:

0.95 = P

(
f0.975,(m−1,n−1) ≤

σ2
1

σ2
2

(
S2
m−1,2

S2
n−1,1

)
≤ f0.025,(m−1,n−1)

)

= P

(
S2
n−1,1

S2
m−1,2

f0.975,(m−1,n−1) ≤
σ2
1

σ2
2

≤
S2
n−1,1

S2
m−1,2

f0.025,(m−1,n−1)

)
.

1.6 Moment generating function

It is useful to have a function that can generate all moments of a random variable.

Definition 1.32. The moment generating function (MGF) of a random variable X, denoted by MX(t), is
defined as:

MX(t) = E(etX),

if the expectation exists for t in some neighborhood of 0.

Remark 1.32.1. More precisely, there exists h > 0 such that for all t in (−h, h), E(etX) exists.

Remark 1.32.2. The MGF of X may not always exist. However, if it does exist, then MX(t) is continuously
differentiable in some neighborhood of the origin.

Remark 1.32.3. If we replace etX with its Taylor series, we obtain:

MX(t) = E

( ∞∑
i=0

(tX)i

i!

)
=

∞∑
i=0

ti

i!
E(Xi) =

∞∑
i=0

ti

i!
µ′
i.

Lemma 1.33. If MX(t) is the MGF of a random variable X, then:

dk

dtk
MX(t)

∣∣∣∣
t=0

= E(Xk) = µ′
k.

Proof.
From the Taylor series expansion of the MGF, we see that:

dk

dtk
MX(t)

∣∣∣∣
t=0

=

∞∑
i=k

ti−k

(i− k)!
E(Xi)

∣∣∣∣∣
t=0

= E(Xk).

Example 1.21. What is the MGF of X ∼ Bern(p)? We have:

MX(t) = E(etX) = et(0)(1− p) + et(1)(p) = pet + 1− p.



18 CHAPTER 1. PRELIMINARY

Lemma 1.34. Random variables X and Y are independent if and only if:

MX,Y (s, t) = MX(s)MY (t).

Lemma 1.35. If random variables X and Y are independent, then:

MX+Y (t) = MX(t)MY (t).

Proof.
Since X and Y are independent:

MX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) = MX(t)MY (t).

Example 1.22. By definition, if Y = Bin(n, p), then Y = X1+ · · ·+Xn, where Xi ∼ Bern(p) for all i, and they
are independent. Therefore:

MY (t) =

n∏
i=1

MXi
(t) = (pet + 1− p)n.

Alternatively, we can solve it without using the definition:

MY (t) = E(etY ) =
n∑

i=0

(
n

i

)
(pet)i(1− p)n−i = (pet + 1− p)n.

Example 1.23. Consider X ∼ Poisson(λ). The MGF of X can be obtained as:

MX(t) =

∞∑
k=0

etk
λke−λ

k!
= e−λ

∞∑
k=0

(λet)k

k!
= eλ(e

t−1).

Example 1.24. Consider X ∼ Exp(λ). If t < λ, we have:

MX(t) = E(etX) =

∫ ∞

0

etxλe−λx dx = λ

∫ ∞

0

e−(λ−t)x dx =
λ

λ− t
.

Example 1.25. What is the MGF of X ∼ N(µ, σ2)? We may first find the MGF of Z ∼ N(0, 1):

MZ(t) = E(etZ) =
∫ ∞

−∞

1√
2π

e−
1
2 (z

2−2tz) dz

=

∫ ∞

−∞

1√
2π

e−
1
2 ((z−t)2−t2) dz = e

t2

2

∫ ∞

−∞

1√
2π

e−
1
2 (z−t)2 dz = e

t2

2 .

Therefore, by having X = σZ + µ, we have:

MX(t) = E(etX) = eµt E(etσZ) = eµt+
1
2σ

2t2 .

Example 1.26. Consider X ∼ U[a, b], where a < b. We have:

MX(t) = E(etX) =

∫ b

a

etx

b− a
dx =

[
etx

t(b− a)

]b
a

=
ebt − eat

t(b− a)
.

Example 1.27. If X ∼ NBin(r, p), then for t < − ln(1− p):

MX(t) =

(
pet

1− (1− p)et

)r

.

If X ∼ Gamma(α, β), then for t < β:

MX(t) =

(
β

β − t

)α

.
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Example 1.28. Given Y ∼ χ2(r). How do we find the MGF of Y ?
Note that the chi-squared distribution is a special case of the gamma distribution. We have χ2(r) = Γ

(
r
2 ,

1
2

)
.

Therefore, by substitution, for t < 1
2 , we get:

MY (t) =

( 1
2

1
2 − t

) r
2

= (1− 2t)−
r
2 .

Example 1.29. Given that Y ∼ χ2(r). How do we find E(Y ) without using the MGF of Y ?
By definition, let Y =

∑r
i=1 X

2
i , where Xi ∼ N(0, 1). Therefore:

E(Y ) =

r∑
i=1

E(X2
i ) =

r∑
i=1

d2

dt2
e

1
2 t

2

∣∣∣∣
t=0

= r(1 + t2)e
1
2 t

2
∣∣∣
t=0

= r.

Ultimately, the reason why we use the moment generating function is the following fact.

Theorem 1.36. (Uniqueness of MGF) Let X and Y be two random variables. Suppose that their MGFs
exist and are equal for all t ∈ (−h, h) for some h > 0, then the distribution functions FX and FY are equal.

This means that by knowing the MGF of a particular random variable X, we can determine its distribution.

Example 1.30. Assume that X1, · · · , Xn are independent and Xi ∼ Bin(mi, p) for all i = 1, · · · , n. Then we
have:

MX1+···+Xn(t) =

n∏
i=1

MXi(t) =

n∏
i=1

(pet + 1− p)mi = (pet + 1− p)
∑n

i=1 mi .

Therefore, we have X1 + · · ·+Xn ∼ Bin (
∑n

i=1 mi, p).

Example 1.31. Assume that X1, · · · , Xn are independent and Xi ∼ Poisson(λi) for all i = 1, · · · , n. Then we
have:

MX1+···+Xn(t) =

n∏
i=1

MXi(t) =

n∏
i=1

eλi(e
t−1) = e

∑n
i=1 λi(e

t−1).

Therefore, we have X1 + · · ·+Xn ∼ Poisson (
∑n

i=1 λi).

Example 1.32. Similarly, given a set of independent random variables {X1, · · · , Xn}:

1. If Xi ∼ NBin(ri, p), then X1 + · · ·+Xn ∼ NBin (
∑n

i=1 ri, p).

2. If Xi ∼ N(µi, σ
2
i ), then X1 + · · ·+Xn ∼ N

(∑n
i=1 µi,

∑n
i=1 σ

2
i

)
.

3. If Xi ∼ Gamma(αi, β), then X1 + · · ·+Xn ∼ Gamma (
∑n

i=1 αi, β) and cXi ∼ Gamma
(
αi,

β
c

)
for c ̸= 0.

Remark 1.36.1. Not all sums of distributions will result in the same type of distribution.

More generally, we deal with problems of limiting distributions.

Theorem 1.37. Suppose {Xn} is a sequence of random variables, each with MGF MXn(t). If:

lim
n→∞

MXn(t) = MY (t),

for all t in a neighborhood of 0, where MY (t) is the MGF of some random variable Y , then there is a unique
distribution function FY with corresponding MY (t) such that:

lim
n→∞

FXn
(y) = FY (y),

for all y where FY (y) is continuous. We denote this as Xn → Y or Xn
D−→ Y .

Remark 1.37.1. Simply put, the limiting distribution of Xn is equal to the distribution of Y .
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We may define limiting convergence in a more theoretical way.

Definition 1.38. A sequence of random variables {Xn} converges in distribution to a random variable X,

denoted by Xn
D−→ X, if for all continuity points x of FX , as n → ∞:

FXn(x) → FX(x).

We also define a stricter form of convergence.

Definition 1.39. A sequence of random variables {Xn} converges in probability to a random variable X,

denoted by Xn
P−→ X, if for any ε > 0, as n → ∞:

P(|Xn −X| < ε) → 1, P(|Xn −X| ≥ ε) → 0.

Remark 1.39.1. If Xn
P−→ X, then Xn

D−→ X. The converse is not necessarily true.

Remark 1.39.2. After this point, we primarily use Xn
D−→ X in most cases. For simplicity, we may write it as

Xn → X.

1.7 Limit Theorems

Using the last two theorems, the following two theorems are highly useful in both statistics and probability theory
as they provide approximate distributions of averages without requiring strong distributional assumptions.

Theorem 1.40. (Weak Law of Large Numbers (WLLN)) Let {Xn} be a sequence of i.i.d. random vari-
ables. Let E(Xi) = µ for all i = 1, 2, · · · . Define X as the sample mean of the random variables. Then, as
n → ∞:

X
D−→ µ.

Theorem 1.41. (Classical Central Limit Theorem (CLT)) Let {Xn} be a sequence of i.i.d. random
variables whose MGFs exist in a neighborhood of 0. Let E(Xi) = µ and Var(Xi) = σ2 > 0 for all i = 1, 2, · · · .
Define X as the sample mean of the random variables. Then, as n → ∞:

√
n(X − µ)

σ
=

∑n
i=1 Xi − nµ√

nσ

D−→ N(0, 1).

Remark 1.41.1. This is a common abuse of notation.

This works generally for most distributions. However, it is often tedious to find the MGF. We can apply the
following version of the CLT instead.

Theorem 1.42. (Lévy-Lindeberg Central Limit Theorem) Let {Xn} be a sequence of i.i.d. random
variables with a common population mean µ and a common population variance σ2. Assume that 0 < σ2 < ∞.
Define X as the sample mean of the random variables. Then, as n → ∞:

√
n(X − µ)

σ
=

∑n
i=1 Xi − nµ√

nσ

D−→ N(0, 1).

Sometimes, we deal with functions of multiple random variables, and we must establish how they converge.

Theorem 1.43. (Slutsky’s Theorem) If Xn
D−→ X and Yn

P−→ c, then:

1. Xn + Yn
D−→ X + c,

2. XnYn
D−→ cX,

3. Xn

Yn

D−→ X
c if c ̸= 0.
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Example 1.33. Assume that Xi ∼ Bern(p) for all i. We want to estimate the unknown p. We have a common
mean µ = p and a common variance σ2 = p(1− p). By applying the CLT, as n → ∞:

X → N

(
p,

p(1− p)

n

)
.

Therefore, we can use the normal distribution to approximate the unknown parameter. We want an estimate
that we can be confident about, and commonly we use a probability of 0.95:

0.95 = P

−z0.025 ≤ X − p√
p(1−p)

n

≤ z0.025

 = P
(
(X − p)2 ≤ z20.025

p(1− p)

n

)
.

Solving the inequality, we would find an interval that estimates the parameter p. However, this is highly

inconvenient. We may use another method. Let us replace
√

p(1−p)
n with

√
X(1−X)

n . As n → ∞:√
X(1−X)

n
=

√
p(1− p)

n

√
p(1− p)

X(1−X)
→
√

p(1− p)

n
,

since, by Slutsky’s Theorem,
√

p(1−p)

X(1−X)
→ 1 as X → p by the WLLN. We have:

0.95 = P

−z0.025 ≤ X − p√
X(1−X)

n

≤ z0.025

 = P

X − z0.025

√
X(1−X)

n
≤ p ≤ X + z0.025

√
X(1−X)

n

 .

Example 1.34. In a survey before an election, a poll was taken of 300 potential voters. Among them, 120 said
that they would vote for candidate A. Determine a 95% confidence interval for the population proportion pA of
voters who would vote for candidate A in the election.
From the poll, we have a point estimate x = p̂A = 120

300 = 0.4. From the last example, we have found that the
95% confidence interval is:(

x− z0.025

√
x(1− x)

n
, x+ z0.025

√
x(1− x)

n

)
≈ (0.3446, 0.4554).

Equivalently, the percentage of voters for candidate A would be from 34.46% to 45.54%, with a margin of error
of 5.54%.

Example 1.35. Following the previous example, assume that we have been given a margin of error D. How
many data points should we collect in order to achieve this margin of error?
From how we find the margin of error:

z0.025

√
x(1− x)

n
= D =⇒ n = p(1− p)

z20.025
D2

.

Since p(1− p) ≤ 1
4 , if we specify that D = 0.05, we have:

n ≤ z20.025
4D2

=
1.962

4(0.05)2
≤ 22

4(0.05)2
= 400.

We may use this to determine whether we have obtained enough data.
Assume that we have n∗ respondents. Is it enough? The number of required respondents is obtained by:

nrequired =
x∗(1− x∗)z20.025

D2
.

If n∗ < nrequired, then the current number of data points is not enough, and we would need to find more
respondents. If n∗ ≥ nrequired, then the current number of data points is sufficient.
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Example 1.36. We aim to use Poisson random variables to prove that as n → ∞:

e−n
n∑

k=0

nk

k!
→ 1

2
.

Let {Xn} be a sequence of i.i.d. random variables where Xi ∼ Poisson(1) for i = 1, 2, · · · . Let Yn =
∑n

i=1 Xi.
By the CLT, we have:

Yn − n√
n

→ N(0, 1).

Since Yn ∼ Poisson(n), we have:

e−n
n∑

k=0

nk

k!
= P(Yn ≤ n) = P

(
Yn − n√

n
≤ 0

)
→ 1

2
.

Example 1.37. Given a sequence of i.i.d. random variables {Xn}, we want to find the asymptotic distribution

for the k-th sample moment Xk as n → ∞. Notice that Xk
i are independent for i = 1, 2, · · · . By the CLT:

√
n(Xk − µ′

k)√
µ′
2k − (µ′

k)
2
→ N(0, 1).

Therefore, the asymptotic distribution for Xk when n → ∞ is N
(
µ′
k,

1
n [µ

′
2k − (µ′

k)
2]
)
.

The Central Limit Theorem provides us with a limiting standard normal distribution for the sample mean. However,
we often deal with functions of the sample mean.

Theorem 1.44. (Continuous Mapping Theorem) Let {Xn} be a sequence of random variables and X be a
random variable. Suppose there is a function g with a set of discontinuity points Dg such that P(X ∈ Dg) = 0.
Then:

1. If Xn
D−→ X, then g(Xn)

D−→ g(X).

2. If Xn
P−→ X, then g(Xn)

P−→ g(X).

Theorem 1.45. (Delta Method) Let {Xn} be a sequence of random variables such that for constants a and
b > 0, as n → ∞: √

n(Xn − a)
D−→ N(0, b2).

Then for a given function g, suppose that g′(a) exists and is not 0. As n → ∞:

√
n(g(Xn)− g(a))

D−→ N(0, [g′(a)b]2).

Corollary 1.46. If X is the sample mean of a random sample X1, · · · , Xn of size n from a distribution with a
finite mean µ and finite variance σ2 > 0, then for a given function g, suppose that g′(µ) exists and is not 0. As
n → ∞: √

n(g(X)− g(µ))
D−→ N(0, [g′(µ)σ]2).

Proof.
By the Central Limit Theorem, we have:

√
n(X − µ)

D−→ N(0, σ2).

Therefore, by the Delta Method, for any function g such that g′(µ) exists and is not 0:

√
n(g(X)− g(µ))

D−→ N(0, [g′(µ)σ]2).



1.7. LIMIT THEOREMS 23

Example 1.38. Assume that there are 70 respondents, 68 of whom would vote for one candidate.
If we use the same process from previous examples, we find that the 95% confidence interval is (0.9324, 1.0105),
which is out of range. In fact, if the point estimate p̂ is quite close to 0 or 1, the resulting interval may include
values that are outside the range of p. This is a poor interval estimate.
We take a transformation, say g(p), such that g(p) ∈ (−∞,∞). Since 0 < p < 1, ln p < 0. Therefore, we find
that:

g(p) = ln(− ln p) ∈ (−∞,∞).

By the Delta method:
g(X)− g(p)

g′(p)

√
X(1−X)

n

→ N(0, 1).

By the WLLN and the Continuous Mapping Theorem, we can replace g′(p) with g′(X). Therefore, we have:

0.95 = P

−z0.025 ≤ g(X)− g(p)

g′(X)

√
X(1−X)

n

≤ z0.025

 .

Solving the formula gives a good 95% confidence interval for p.

Example 1.39. Let {Xn} be a sequence of i.i.d. random variables where Xi ∼ Bern(θ) for i = 1, 2, · · · . Show
that:

Zn = 2
√
n
(
sin−1

√
X − sin−1

√
θ
)
→ N(0, 1).

Let g(t) = sin−1
√
t. We obtain:

g′(t) =
1

2
√
t
√
1− t

.

The derivative is well-defined and non-zero for 0 < θ < 1 by substituting t = θ. Note that E(Xi) = θ and
Var(Xi) = θ(1− θ) for i = 1, · · · , n. By Corollary 1.46:

√
n(g(X)− g(θ)) → N

(
0,

1

4

)
.

Since Zn = 2
√
n(g(X)− g(θ)), we find that as n → ∞:

Zn → N(0, 1).

Example 1.40. Let {Xn} be a sequence of i.i.d. random variables where Xi ∼ Exp(θ) for i = 1, 2, · · · . We
want to find a variance-stabilizing transformation, which is a function g(x) such that the limiting distribution
of:

Yn =
√
n[g(Xn)− g(θ)]

does not depend on θ. We find that E(Xi) =
1
θ and Var(Xi) =

1
θ2 for i = 1, 2, · · · .

We claim that g(x) = lnx is the desired transformation. We have:

g′(x) =
1

x
.

By substituting x = 1
θ , we see that the derivative is non-zero. Applying Corollary 1.46:

√
n

(
g(X)− g

(
1

θ

))
→ N(0, 1).

Therefore, g(x) = lnx is the variance-stabilizing transformation.
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However, we usually deal with more than one variable. Before extending the theorems to the multivariate case, we
must first introduce the multivariate normal distribution.

Example 1.41. (Multivariate Normal Distribution) X ∼ Nk(µ,Σ)
Given a random vector X, let the k × 1 vector µ be the expected value of X and the k × k matrix Σ be its
variance-covariance matrix. Assume that Σ is positive-definite (for all non-zero vectors z with real entries, we
have zTΣz > 0). The random vector X is k-dimensional normal if its PDF is:

fX(x) = (2π)−
k
2 |Σ|−

1
2 e−

1
2 (x−µ)TΣ−1(x−µ).

Remark 1.46.1. The i-th row and j-th column of the k × k variance-covariance matrix Σ is the element aij ,
given by:

aij = cov(Xi, Xj).

Note that if i = j, then cov(Xi, Xi) = Var(Xi).

Example 1.42. If k = 2, then X ∼ N2(µ,Σ) is bivariate normal.

Lemma 1.47. If X ∼ Np(µ,Σ), then for any q × p matrix A, we have:

AX ∼ Nq(Aµ,AΣAT ).

Example 1.43. Using this lemma, one can isolate some of the random variables that make up the random
vector X = (X1 · · · Xp)

T ∼ Np(µ,Σ). For example, setting the (p− 1)× p matrix A as:

A =


0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1

 =

 0
... I(p−1)×(p−1)

0

 .

We find that:

AX =

X2

...
Xp

 ∼ Np−1(Aµ,AΣAT ),

where Aµ is the mean vector of (X2 · · · Xp)
T and AΣAT is the variance-covariance matrix of (X2 · · · Xp)

T .

Lemma 1.48. If: (
X1

X2

)
∼ N2

((
µ1

µ2

)
,

(
σ2
11 σ2

12

σ2
21 σ2

22

))
,

then X1 and X2 are independent if and only if σ2
12 = σ2

21 = 0.

Proof.
From the properties of covariance:

σ2
12 = cov(X1, X2) = cov(X2, X1) = σ2

21.

Suppose that X1 and X2 are independent. We have:

cov(X1, X2) = E[(X1 − E(X1))(X2 − E(X2))] = E(X1X2)− E(X1)E(X2) = 0.

Therefore, σ2
12 = σ2

21 = 0.
Conversely, suppose that σ2

12 = σ2
21 = 0. We have cov(X1, X2) = 0. Therefore:

fX1,X2(x1, x2) =
1

2πσ11σ22
exp

(
−1

2

(
(x1 − µ1)

2

σ2
11

+
(x2 − µ2)

2

σ2
22

))
=

1√
2πσ2

11

exp

(
− (x1 − µ1)

2

2σ2
11

)
1√

2πσ2
22

exp

(
− (x2 − µ2)

2

2σ2
22

)
= fX1

(x1)fX2
(x2).

Therefore, X1 and X2 are independent.
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Remark 1.48.1. Two random variables being uncorrelated does not imply that they are independent. This is
only true if they are bivariate normal.

We may extend the CLT to the multivariate case.

Theorem 1.49. (Multivariate Central Limit Theorem) Let {Xn = (Xn1 · · · Xnk)
T ∈ Rk} be a sequence

of i.i.d. random vectors with a variance-covariance matrix Σ. We assume that E(X2
ij) < ∞ for i = 1, 2, · · · and

j = 1, · · · , k. Define X as the sample mean of the random vectors. Then, as n → ∞:

√
n(X− µ)

D−→ Nk(0,Σ).

We may extend the Delta method to multivariate cases.

Theorem 1.50. (Multivariate 1st-Order Delta Method) Let {Xn ∈ Rk} be a sequence of random vectors
such that for a constant vector a ∈ Rk, as n → ∞:

√
n(Xn − a)

D−→ U,

where U is a random vector in Rk. If a function h : Rk → R has a derivative ∇h(a) ̸= 0, then as n → ∞:

√
n(h(Xn)− h(a))

D−→ ∇h(a)U,

where:

∇h =

(
∂

∂t1
h(t1, · · · , tk), · · · ,

∂

∂tk
h(t1, · · · , tk)

)
.
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Chapter 2

Point Estimation

In this chapter, we will study two general approaches to estimate unknown parameters of any given parametric
distribution.
The basic idea of point estimation is to use a statistic T , an estimate T (x), or an estimator T (X) to estimate the
unknown parameter g(θ), where x = (x1 · · · xn)

T is a realization of the random vector X = (X1 · · · Xn)
T with a

PDF f(x|θ) or PMF p(x|θ), and θ lies in the parameter space Θ.

Remark 2.0.1. Most often, the parameters of interest to be estimated (estimand) are functions of the unknown
distribution parameters θ, e.g., µ2 or σ

µ .

Remark 2.0.2. We only estimate unknown parameters. There is no point in estimating an already known
parameter.

Definition 2.1. An estimator or estimate θ̂ is unbiased or mean-unbiased for θ if E(θ̂) = θ.

2.1 Methods of Moments Estimation

The method of moments estimation is one of the most widely used techniques in statistics for estimating unknown
parameters. As the name suggests, it is based on moments. The motivation behind this method is that, in some
cases, the parameter of interest can be expressed as a function of population moments about 0.

Definition 2.2. Suppose there are k unknown parameters θ1, · · · , θk. If these parameters can be expressed in
terms of k or more moments, i.e.: 

θ1 = g1(µ
′
1, µ

′
2, · · · , µ′

k, · · · ),
θ2 = g2(µ

′
1, µ

′
2, · · · , µ′

k, · · · ),
...

θk = gk(µ
′
1, µ

′
2, · · · , µ′

k, · · · ),

then the method of moments estimator (MME) of (θ1, θ2, · · · , θk), denoted by (θ̃1, θ̃2, · · · , θ̃k), is given by:
θ̃1 = g1(X,X2, · · · , Xk, · · · ),
θ̃2 = g2(X,X2, · · · , Xk, · · · ),
...

θ̃k = gk(X,X2, · · · , Xk, · · · ).

Remark 2.2.1. The method of moments estimate is obtained by substituting sample moments:

θ̃i = gi(x, x2, · · · , xk, · · · )

for i = 1, · · · , k.

Remark 2.2.2. This method is quick and straightforward, but the MMEs obtained are often biased and heavily
depend on the existence of the required population moments.

27
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Remark 2.2.3. Do not confuse the method of moments estimator with the method of moments estimate.

Remark 2.2.4. Do not write the MME as (θ1, θ2, · · · , θk). This is incorrect.

Example 2.1. Consider a random sample of size n from X ∼ N(10, σ2). We want to estimate σ2.
We have k = 1, θ1 = σ2. We can express it in terms of moments:

σ2 = E(X2)− 100.

Therefore, the MME of σ2 is:
σ̃2 = X2 − 100.

Example 2.2. Consider a random sample of size n from X ∼ N(µ, σ2). We want to estimate µ and σ2.
We have k = 2, (θ1, θ2) = (µ, σ2). We can express them in terms of moments:{

µ = E(X),

σ2 = E(X2)− [E(X)]2.

Therefore, the MME of µ and σ2 are:{
µ̃ = X,

σ̃2 = X2 − (X)2 = 1
n

∑n
i=1(Xi −X)2.

Remark 2.2.5. The MME may not be unique because the parameter can be expressed as different functions of
moments. To address this issue, we usually prefer using fewer or lower moments to obtain the MME.

Example 2.3. Consider a random sample of size n fromX ∼ Poisson(λ). We want to estimate λ. We have k = 1,
θ1 = λ. There are multiple ways to express it in terms of moments. For example, λ = E(X), λ = E(X2)−[E(X)]2,
or other combinations. Based on the remark, we choose the one with fewer or lower moments:

λ = E(X).

Therefore, the MME of λ is:
λ = X.

Example 2.4. Consider a random sample of size n from X ∼ Gamma(α, β). Assume that we know E(X) =
3423. We have k = 2, (θ1, θ2) = (α, β). We can express them in terms of moments:{

3423 = α
β ,

E(X2) = α
β2 + 34232.

=⇒

{
α = 34232

E(X2)−34232 ,

β = 3423
E(X2)−34232 .

Therefore, the MME of α and β is: {
α̃ = 34232

X2−34232
,

β̃ = 3423

X2−34232
.

Lemma 2.3. (Invariance Property of MME) If θ̃i is the MME for θi for i = 1, · · · , k, then h(θ̃1, · · · , θ̃k) is
the MME for h(θ1, · · · , θk), where h is a known function.

Theorem 2.4. A sequence of MMEs {θ̃n ∈ Rk} is consistent, asymptotically unbiased for θ, and asymptotically

normally distributed. More precisely, under certain assumptions like E |X|2k < ∞, as n → ∞, we have:

√
n(θ̃n − θ) → Nk(0,GHGT ),

where G is a k× k matrix with ∂gi
∂µ′

j
as its (i, j)-th entry, and H is a k× k matrix with µ′

i+j −µ′
iµ

′
j as its (i, j)-th

entry, for i = 1, · · · , k and j = 1, · · · , k.
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Remark 2.4.1. In the theorem, ”consistent” means convergence in probability. For any ε > 0, as n → ∞:

P(|θ̃n − θ| > ε) → 0.

Remark 2.4.2. Also in the theorem, ”asymptotically unbiased” means that:

lim
n→∞

E(θ̃n) = θ.

Note that it may be true that E(θ̃n) ̸= θ for some n.

Example 2.5. Consider a random sample of size n from a random variable X with E |X|4 < ∞. We take:

θ =

(
µ
σ2

)
=

(
µ′
1

µ′
2 − (µ′

1)
2

)
.

We have:

G =

(
1 0

−2µ′
1 1

)
, H =

(
µ′
2 − (µ′

1)
2 µ′

3 − µ′
1µ

′
2

µ′
3 − µ′

2µ
′
1 µ′

4 − (µ′
2)

2

)
.

Therefore:

GHGT =

(
1 0

−2µ′
1 1

)(
µ′
2 − (µ′

1)
2 µ′

3 − µ′
1µ

′
2

µ′
3 − µ′

2µ
′
1 µ′

4 − (µ′
2)

2

)
GT

=

(
µ′
2 − (µ′

1)
2 µ′

3 − µ′
1µ

′
2

µ′
3 − 3µ′

1µ
′
2 + 2(µ′

1)
3 µ′

4 − 2µ′
1µ

′
3 − (µ′

2)
2 + 2(µ′

1)
2µ′

2

)(
1 −2µ′

1

0 1

)
=

(
µ′
2 − (µ′

1)
2 µ′

3 − 3µ′
1µ

′
2 + 2(µ′

1)
3

µ′
3 − 3µ′

1µ
′
2 + 2(µ′

1)
3 µ′

4 − 4µ′
1µ

′
3 − (µ′

2)
2 + 8µ′

2(µ
′
1)

2 − 4(µ′
1)

4

)
.

Using the fact that:

µ3 = µ′
3 − 3µ′

2µ
′
1 + 2(µ′

1)
3,

µ4 = µ′
4 − 4µ′

3µ
′
1 + 6µ′

2(µ
′
1)

2 − 3(µ′
1)

4,

σ4 = (µ′
2)

2 − 2µ′
2(µ

′
1)

2 + (µ′
1)

4,

we find the resultant matrix:

GHGT =

(
σ2 µ3

µ3 µ4 − σ4

)
.

Using Theorem 2.4, denote:

θ̃n =

(
Xn

S2
n

)
.

As n → ∞:
√
n

[(
Xn

S2
n

)
−
(
µ
σ2

)]
→ N2

((
0
0

)
,

(
σ2 µ3

µ3 µ4 − σ4

))
.

Based on the properties of the variance-covariance matrix, we find that as n → ∞:

√
n(S2

n − σ2) → N(0, µ4 − σ4).

By the Delta Method, under the condition that σ2 > 0:

√
n(Sn − σ) → N

(
0,

µ4 − σ4

4σ2

)
.
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2.2 Maximum Likelihood Estimation

The method of maximum likelihood is by far the most popular technique for deriving estimators, popularized by
Ronald Aylmer Fisher in 1922. Currently, there is still a lot of research studying the properties of this estimation
method.

Definition 2.5. Consider a random sample of size n from a population with a PDF f(x|θ) or a PMF p(x|θ).
Given a realization x = (x1 · · · xn)

T , the likelihood function is defined as:

L(θ) = L(θ1, · · · , θk|x) =

{∏n
i=1 f(xi|θ), Continuous case,∏n
i=1 p(xi|θ), Discrete case.

The likelihood function quantifies how likely the observed data is to occur.

Remark 2.5.1. The likelihood function L(θ) is a function of θ with fixed x.

Remark 2.5.2. Do not replace xi with x:

L(θ) =

{∏n
i=1 f(xi|θ) ̸=

∏n
i=1 f(x|θ), Continuous case,∏n

i=1 p(xi|θ) ̸=
∏n

i=1 p(x|θ), Discrete case.

The idea is that for each realization of x, we want to estimate a value of θ ∈ Θ at which L(θ) attains its maximum.

Definition 2.6. The maximum likelihood estimate (MLE), denoted by θ̂, is obtained as:

θ̂ = argmax
θ∈Θ

L(θ).

Remark 2.6.1. In some cases, especially when differentiation is used, it is easier to work with the log-
likelihood, defined as:

l(θ) = lnL(θ).

We can do this because l(θ) and L(θ) are strictly increasing and have the same maxima.

Example 2.6. Consider a random sample of size n = 10 from Bern(θ), where θ is unknown. Therefore:

L(θ) =

n∏
i=1

p(xi|θ) = θnx(1− θ)n−nx.

Suppose that there are only two possible values of θ: θ = 0.1 or θ = 0.5.
From the observed data, assume that x = 0.4. Substituting gives:

L(0.1) = (0.1)4(0.9)6 = 0.0000531441, L(0.5) = (0.5)4(0.5)6 = 0.0009765625.

Therefore, the MLE of θ is θ̂ = 0.5.

Example 2.7. In the case where L(θ) is differentiable on the interior of Θ, one possible way of finding an MLE
of θ = (θ1 · · · θk)

T is to solve the first-order equations for i = 1, · · · , k:

∂

∂θi
L(θ) = 0 or

∂

∂θi
l(θ) = 0,

and check all the extrema.

Remark 2.6.2. Solving the first-order likelihood equations only gives you the maxima at critical points. You
also need to check the extreme values.



2.2. MAXIMUM LIKELIHOOD ESTIMATION 31

Example 2.8. Consider a random sample of size n from N(θ, 1), where θ is unknown. We may obtain the
log-likelihood:

l(θ) = ln

(
n∏

i=1

1√
2π

e−
1
2 (xi−θ)2

)
= −1

2

n∑
i=1

(xi − θ)2 − n

2
ln(2π).

We find the critical points by solving:

0 =
∂

∂θ
l(θ) =

n∑
i=1

(xi − θ).

This has the solution θ̂ = x. To check that the solution is indeed a global maximum, we verify:

∂2

∂θ2
l(θ) = −n < 0.

Therefore, the MLE of θ is θ̂ = x.

Example 2.9. Continuing the previous example, we may alternatively find that for any θ ∈ Θ:

n∑
i=1

(xi − θ)2 ≥
n∑

i=1

(xi − x)2.

Thus, for any θ ∈ Θ:
L(θ) ≤ L(x).

Therefore, the MLE of θ is θ̂ = x.

Example 2.10. Consider a random sample of size n from N(θ, 1), where θ is unknown. Previously, we found

that θ̂ = x, which maximizes the log-likelihood. Let us now restrict θ ≥ 0.
If x ≥ 0, then it satisfies the constraint θ ≥ 0. Therefore, the MLE is:

θ̂ = x.

If x < 0, then it does not satisfy the constraint θ ≥ 0. We analyze the log-likelihood again:

l(θ) = −1

2

n∑
i=1

(xi − θ)2 − n

2
ln(2π) = −1

2

n∑
i=1

(xi − x)2 − n

2
(x− θ)2 − n

2
ln(2π).

The term (x− θ)2 is minimized while satisfying the constraint when θ = 0.
Therefore, if we restrict θ ≥ 0, the MLE of θ is:

θ̂ = max{x, 0}.

Remark 2.6.3. Remember, when we estimate a parameter, we must use the data we have obtained.

Example 2.11. Consider a random sample of size n from U[0, θ], where θ ∈ (0,∞) is unknown. The likelihood
function is:

L(θ) =
1

θn
10≤x(1)≤···≤x(n)≤θ,

where x(i) represents the i-th smallest data point for i = 1, · · · , n. Therefore, the MLE is:

θ̂ = x(n).

Remark 2.6.4. The MLE may be biased, and it may not exist in Θ, especially when Θ is an open set.
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Remark 2.6.5. The MLE defined may not be unique.

Example 2.12. Consider a random sample of size n from U[θ − 1, θ + 1], where θ is unknown. The likelihood
function is:

L(θ) =
1

2n
1θ−1≤x(1)≤···≤x(n)≤θ+1 =

1

2n
1x(n)−1≤θ≤x(1)+1,

where x(i) represents the i-th smallest data point for i = 1, · · · , n. We find that any estimate in [x(n)−1, x(1)+1]
maximizes L(θ). Therefore, there are infinitely many MLEs of θ.

Lemma 2.7. (Invariance Property of MLE) If θ̂i is the MLE of θi for i = 1, · · · , k, then h(θ̂1, · · · , θ̂k) is the
MLE for h(θ1, · · · , θk), where h is a known function.

Theorem 2.8. A sequence of MLEs {θ̂n ∈ Rk} is consistent, asymptotically unbiased for θ, asymptotically
efficient, and asymptotically normally distributed. More precisely, under regularity assumptions, as n → ∞, we
have: √

n(θ̂n − θ) → Nk(0, I−1
X (θ)),

where IX(θ) is known as the Fisher Information matrix and is a k×k matrix with the (i, j)-th entry defined
as: E

[(
∂
∂θi

ln fX(X|θ)
)(

∂
∂θj

ln fX(X|θ)
)]

, Continuous case,

E
[(

∂
∂θi

ln pX(X|θ)
)(

∂
∂θj

ln pX(X|θ)
)]

, Discrete case,

for i = 1, · · · , k and j = 1, · · · , k.

Remark 2.8.1. In the theorem, ”asymptotically efficient” means that the limiting variance is the smallest
possible. This will be further discussed in Chapter 3.

Notice that we have used a special matrix called the ”Fisher Information Matrix.” What is Fisher Information?

Definition 2.9. Given a set of random variables {X1, · · · , Xn}, the Fisher Information, or Fisher Infor-
mation matrix if more than one unknown parameter is considered, of the set is defined as:

IX1,··· ,Xn
(θ) =

{
E
[

d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ)
]2

, Continuous case,

E
[

d
dθ ln pX1,··· ,Xn(X1, · · · , Xn|θ)

]2
, Discrete case.

Remark 2.9.1. Fisher Information is a measure of the amount of information about an unknown parameter θ
that a random variable or data carries. It is very important because it quantifies this amount appropriately.

Example 2.13. If X ∼ N(µ, σ2), where σ2 is known but µ ∈ (−∞,∞) is unknown, then the Fisher Information
about µ contained in X is:

IX(µ) = E
[
d

dµ
ln fX(X|µ)

]2
= E

[
d

dµ

(
− 1

2σ2
(X − µ)2 − 1

2
ln(2πσ2)

)]2
= E

[
1

σ2
(X − µ)

]2
=

1

σ2
.

Example 2.14. If X ∼ Bern(p), where p ∈ (0, 1) is unknown, then the Fisher Information about p contained
in X is:

IX(p) = E
[
d

dp
ln fX(X|p)

]2
= E

[
d

dp
(X ln p+ (1−X) ln(1− p))

]2
= E

[
X

p
− 1−X

1− p

]2
= E

[
X − p

p(1− p)

]2
=

p(1− p)

p2(1− p)2
=

1

p(1− p)
.
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We will see some properties of the Fisher Information. For simplicity, we will only discuss continuous random
variables. Notice that we used something called the ”regularity assumption”? The following are the regularity
conditions that we need:

1. d
dθ ln fX1,··· ,Xn(x1, · · · , xn|θ) exists for all x1, · · · , xn and all θ ∈ Θ.

2. For any statistic T (x1, · · · , xn):

d

dθ

∫
· · ·
∫

T (x1, · · · , xn)fX1,··· ,Xn
(x1, · · · , xn|θ) dx1 · · · dxn

=

∫
· · ·
∫

T (x1, · · · , xn)
d

dθ
fX1,··· ,Xn

(x1, · · · , xn|θ) dx1 · · · dxn.

3. 0 < IX1,··· ,Xn(θ) < ∞ for all θ ∈ Θ.

Condition 2 can be satisfied when the support of X does not depend on θ, where the support of X is defined below:

Definition 2.10. Suppose X is a random variable with a PMF p(x) or a PDF f(x). The support of X is
defined as:

supp(X) =

{
{x : pX(x) > 0}, Discrete case,

{x : fX(x) > 0}, Continuous case.

Lemma 2.11. Suppose X is a random variable with PDF fX . Under the regularity conditions, we have:

E
[
d

dθ
ln fX(X|θ)

]
= 0.

Proof.

0 =
d

dθ

∫ ∞

−∞
fX(x|θ) dx =

∫ ∞

−∞

d

dθ
fX(x|θ) dx =

∫ ∞

−∞

(
d

dθ
ln fX(x|θ)

)
fX(x|θ) dx = E

[
d

dθ
ln fX(X|θ)

]
.

Remark 2.11.1. Using this lemma, we can find that:

IX(θ) = Var

(
d

dθ
ln fX(X|θ)

)
.

Lemma 2.12. Suppose that {X1, · · · , Xn} is a set of random variables. Under the regularity conditions and

the assumption that d2

dθ2 ln fX1,··· ,Xn(x1, · · · , xn|θ) exists for all x1, · · · , xn and all θ ∈ Θ, we have:

E
[
d

dθ
ln fX(X|θ)

]2
= −E

[
d2

dθ2
ln fX(X|θ)

]
.

Proof.
From the proof of the last lemma:

0 =
d

dθ

∫ ∞

−∞

(
d

dθ
ln fX(x|θ)

)
fX(x|θ) dx

=

∫ ∞

−∞

d

dθ

[(
d

dθ
ln fX(x|θ)

)
fX(x|θ)

]
dx

=

∫ ∞

−∞

(
d2

dθ2
ln fX(x|θ)

)
fX(x|θ) dx+

∫ ∞

−∞

(
d

dθ
ln fX(x|θ)

)
d

dθ
fX(x|θ) dx

=

∫ ∞

−∞

(
d2

dθ2
ln fX(x|θ)

)
fX(x|θ) dx+

∫ ∞

−∞

(
d

dθ
ln fX(x|θ)

)2

fX(x|θ) dx

= E
[
d2

dθ2
ln fX(X|θ)

]
+ E

[
d

dθ
ln fX(X|θ)

]2
,

−E
[
d2

dθ2
ln fX(X|θ)

]
= E

[
d

dθ
ln fX(X|θ)

]2
.
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Assume that we consider two independent random variables X and Y . We can find the Fisher Information about
θ contained in (X,Y ) by finding the Fisher Information about θ contained in each of them.

Lemma 2.13. If X and Y are independent and their PDFs satisfy the regularity conditions, then:

IX,Y (θ) = IX(θ) + IY (θ).

Proof.
Since X and Y are independent:

IX,Y (θ) = E
[
d

dθ
ln fX,Y (X,Y |θ)

]2
= E

[
d

dθ
ln fX(X|θ) + d

dθ
ln fY (Y |θ)

]2
= E

[
d

dθ
ln fX(X|θ)

]2
+ 2E

[(
d

dθ
ln fX(X|θ)

)(
d

dθ
ln fY (Y |θ)

)]
+ E

[
d

dθ
ln fY (Y |θ)

]2
= E

[
d

dθ
ln fX(X|θ)

]2
+ E

[
d

dθ
ln fY (Y |θ)

]2
(Lemma 2.11)

= IX(θ) + IY (θ).

By applying the same result to a random sample of size n, we can obtain the following property.

Lemma 2.14. Suppose {X1, · · · , Xn} is a random sample of size n from a distribution. Then:

IX1,··· ,Xn
(θ) =

n∑
i=1

IXi
(θ) = nIX1

(θ).

Remark 2.14.1. For any i ̸= j, IXi
(θ) = IXj

(θ) only means that Xi and Xj carry the same amount of
information about θ. It does not mean they carry identical information.

Example 2.15. Consider a set of i.i.d. random variables {X1, · · · , Xn} where for all i = 1, · · · , n, Xi ∼
Cauchy(θ) and has a PDF:

fXi
(x|θ) = 1

π(1 + (x− θ)2)
.

We may find that:

IXi
(θ) = E

[
d

dθ
ln fXi

(Xi|θ)
]2

= E
(

2(Xi − θ)

1 + (Xi − θ)2

)2

=

∫ ∞

−∞

(
2(x− θ)

1 + (x− θ)2

)2
1

π(1 + (x− θ)2)
dx

=
4

π

∫ ∞

−∞

u2

(1 + u2)3
du (u = x− θ, du = dx)

=
8

π

∫ ∞

0

u2

(1 + u2)3
du

=
4

π

∫ 1

0

√
y
√
1− y dy (y = 1

1+u2 , dy = − 2u
(1+u2)2 du)

=
4

π

∫ 1

0

(y)
3
2−1(1− y)

3
2−1 dy (Beta integral)

=
4Γ( 32 )Γ(

3
2 )

πΓ(3)
=

4(0.5
√
π)2

π(2!)
=

1

2
. (Γ(z1)Γ(z2)Γ(z1+z2)

=
∫ 1

0
tz1−1(1− t)z2−1 dt)

Therefore, IX1,··· ,Xn
(θ) = nIX1

(θ) = n
2 .
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Note that a statistic or an estimator can be considered as a function for data condensation because it condenses a
random sample into a lower-dimensional quantity.

Lemma 2.15. Suppose that X is a random vector. Under the regularity conditions, for any statistic T (X) for
θ, we have:

IT (X)(θ) ≤ IX(θ).

Remark 2.15.1. The Fisher Information of T (X) is defined as:

IT (X)(θ) = E
[
d

dθ
ln fT (X)(T (X)|θ)

]2
.

We may prove Theorem 2.8 in the one-parameter case:

Theorem 2.16. Consider a random sample {X1, · · · , Xn} of size n from a parametric distribution with a PDF

fX . Then, under the regularity and some other conditions, for θ ∈ R, a sequence of MLEs {θ̂n ∈ R} satisfies:

√
n(θ̂n − θ) → N

(
0,

1

IX(θ)

)
.

Proof.
Since the MLE θ̂n is the solution to l′(θ) = 0, we can apply a Taylor expansion of l′(θ̂n) at θ to find:

0 = l′(θ) + l′′(θ)(θ̂n − θ) + o(θ̂n − θ),

√
n(θ̂n − θ) =

1√
n
l′(θ)

− 1
n l

′′(θ)
− o(θ̂n − θ).

First, consider the numerator. Note that d
dθ ln fX(X1|θ), · · · , d

dθ ln fX(Xn|θ) are i.i.d. By the CLT, we have:

√
n

(
1

n

n∑
i=1

d

dθ
ln fX(Xi|θ)− E

[
d

dθ
ln fX(X1|θ)

])
→ N

(
0,Var

[
d

dθ
ln fX(X1|θ)

])
.

By Lemma 2.11, we have:

1√
n
l′(θ) =

1√
n

n∑
i=1

d

dθ
ln fX(Xi|θ) → N(0, IX(θ)).

Now consider the denominator. By the WLLN and Lemma 2.12, since d2

dθ2 ln fX(X1|θ), · · · , d2

dθ2 ln fX(Xn|θ) are
i.i.d.:

− 1

n
l′′(θ) = − 1

n

n∑
i=1

d2

dθ2
ln fX(Xi|θ) → −E

[
d2

dθ2
ln fX(X|θ)

]
= E

[
d

dθ
ln fX(X|θ)

]2
= IX(θ).

Consequently, we have:

√
n(θ̂n − θ) =

1√
n
l′(θ)

− 1
n l

′′(θ)
− o((θ̂n − θ)) → N

(
0,

1

IX(θ)

)
.

Remark 2.16.1. Sometimes, IX(θ) cannot be determined easily. We replace it with the observed Fisher Infor-

mation defined as − 1
n l

′′(θ̂n). Since θ̂n is consistent for θ, − 1
n l

′′(θ̂n) is also consistent for IX(θ) by the Continuous
Mapping Theorem. Therefore:√

−l′′(θ̂n)(θ̂n − θ) =
√
n

√
− 1

n
l′′(θ̂n)(θ̂n − θ) → N(0, 1).
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Example 2.16. (Principle of Numerical Solution to Likelihood Equations) Consider a random sample
of size n from X ∼ Cauchy(θ), similar to the previous example. We want to find the MLE of θ. We have:

l(θ) = −n lnπ −
n∑

i=1

ln(1 + (xi − θ)2).

We want to find the solution of l′(θ) = 0, which is the MLE. Setting:

n∑
i=1

2(xi − θ)

1 + (xi − θ)2
= 0.

However, this is extremely hard to solve explicitly. We need a numerical method to solve this.

Example 2.17. (Newton-Raphson Algorithm) By Taylor expansion, we can write:

0 =
1

n
l′(θ̂) ≈ 1

n
l′(θ) +

1

n
(θ̂ − θ)l′′(θ).

Rearranging gives:

θ̂ ≈ θ − l′(θ)

l′′(θ)
.

We may initially guess a number, say θ0. By iteratively applying the procedure for j = 0, 1, · · · :

θj+1 = θj −
l′(θj)

l′′(θj)
,

and stopping at a certain criterion, say |θj+1 − θj | < K for some chosen constant K (e.g., K = 10−5), we can
approximate the MLE of θ using this algorithm.

Example 2.18. Consider a random sample of size n fromX ∼ Gamma(α, β), where β = 3423 and α is unknown.
The PDF is defined as:

fX(x|α) =

{
3423α

Γ(α) x
α−1e−3423x, x > 0,

0, Otherwise.

We can find the log-likelihood:

l(α) =

n∑
i=1

ln fX(xi|α) = nα ln 3423− n ln(Γ(α)) + (α− 1)

n∑
i=1

lnxi − 3423

n∑
i=1

xi.

To find the MLE, we solve the equation:

0 =
d

dα
l(α) = n ln 3423− n

d

dα
ln(Γ(α)) +

n∑
i=1

lnxi.

However, since d
dα ln(Γ(α)) is difficult to compute explicitly, we use numerical methods to approximate the MLE.



Chapter 3

Uniformly Minimum Variance Unbiased
Estimator

We usually want to find the best estimator that can approximate some parameters. However, there are many
estimators we can provide based on the information given. In this chapter, we will try to find the best among them.

3.1 Introduction to UMVUE

Consider a class M defined as all the estimators for θ. If there exists an estimator θ̂∗ ∈ M that is uniformly
better than any other estimator in M , then we say θ̂∗ is the best estimator of θ in M . However, in general, this
estimator does not exist, partly because there are too many estimators to consider, and some of them are poor or
not reasonable. To avoid this problem, we only consider a particular class of estimators, which is the mean-unbiased
estimators.

Remark 3.0.1. In this context, θ̂∗ being ”uniformly better” means that Var(θ̂∗) < Var(θ̂) for any other θ̂ ∈ M .

Recall the definition of a mean-unbiased estimator. If an estimator θ̂ satisfies:

E(θ̂) = θ,

for all θ ∈ Θ, then it is mean-unbiased or simply unbiased for θ. Otherwise, it is biased.
From past experiences, we may note the following remarks.

Remark 3.0.2. Unbiasedness means that by repeated sampling, θ̂ = θ on average. The underestimation and
overestimation will balance out in the long run.

Remark 3.0.3. Sample variance S2
n−1 is unbiased for σ2, but S2

n is not. This is why we use S2
n−1 to estimate

σ2 instead of S2
n.

Remark 3.0.4. MME and MLE are usually biased, but they are asymptotically unbiased.

Remark 3.0.5. It is possible to have infinitely many different unbiased estimators for θ.

Example 3.1. Consider {X1, · · · , Xn} as a random sample of size n from a distribution with a finite mean θ.

Any estimator θ̂ in the form of:

θ̂ =

∑n
i=1 aiXi∑n
i=1 ai

,

where ai ∈ R for i = 1, · · · , n and
∑n

i=1 ai ̸= 0, is unbiased for θ.

Remark 3.0.6. It is possible to have no unbiased estimators for θ.

Example 3.2. Consider a random sample of size n from a random variable X ∼ Bin(1, θ) with g(θ) = θ
1−θ as

the parameter being estimated. There does not exist an unbiased estimator for g(θ).

37
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Remark 3.0.7. Unbiasedness does not have an invariance property. If θ̂ is unbiased for θ, it does not mean
h(θ̂) is unbiased for h(θ).

Example 3.3. We have X as unbiased for µ, but (X)2 is not unbiased for µ2 when σ > 0.

The best unbiased estimator is the unbiased estimator with the smallest variance.

Definition 3.1. The Uniformly Minimum Variance Unbiased Estimator (UMVUE) θ̂∗ for θ is an

unbiased estimator such that for all other unbiased estimators θ̂ for θ:

Var(θ̂∗) ≤ Var(θ̂),

for all θ ∈ Θ.

Lemma 3.2. (Uniqueness of UMVUE) Assume that the UMVUE for θ exists. Then, it is unique.

Proof.
Assume that there are two distinct UMVUEs, θ̂∗ and θ̂∗∗, for θ. We may find that for all θ ∈ Θ and any unbiased
estimator θ̂ of θ:

Var(θ̂∗) = Var(θ̂∗∗) ≤ Var(θ̂).

Let θ̂′ = 1
2 (θ̂

∗ + θ̂∗∗). We can easily find that θ̂′ is unbiased for θ. We have:

Var(θ̂′) =
1

4
Var(θ̂∗) +

1

4
Var(θ̂∗∗) +

1

2
cov(θ̂∗, θ̂∗∗)

≤ 1

2
Var(θ̂∗) +

1

2

√
Var(θ̂∗)Var(θ̂∗∗)

≤ Var(θ̂∗) ≤ Var(θ̂′).

Thus, Var(θ̂′) = Var(θ̂∗) and cov(θ̂∗, θ̂∗∗) =

√
Var(θ̂∗)Var(θ̂∗∗).

Recall the Pearson correlation coefficient. We find that:

ρ =
cov(θ̂∗, θ̂∗∗)√

Var(θ̂∗)Var(θ̂∗∗)
= 1.

This means θ̂∗ and θ̂∗∗ have a perfectly linear positive relationship. We say θ̂∗ = aθ̂∗∗ + b where a > 0 and b ∈ R.
Solving the equations: {

Var(θ̂∗∗) = Var(θ̂∗) = a2 Var(θ̂∗∗),

E(θ̂∗∗) = θ = E(θ̂∗) = aE(θ̂∗∗) + b,

we find that a = 1 and b = 0. Therefore, θ̂∗ = θ̂∗∗, and the UMVUE is unique.

3.2 Sufficient Statistic

It is not easy to find the UMVUE for a parameter being estimated. However, we have the Rao-Blackwell Theorem
(we will discuss it later), which tells us that the UMVUE must be a function of a sufficient statistic. Let us discuss
sufficient statistics.
Note that a statistic or an estimator can be considered as a function for data condensation because it condenses a
random sample into a lower-dimensional quantity. However, in the process, we may lose some information about
the parameter θ.
Recall this lemma: under regularity conditions, for any statistic T = T (X) for θ, we have:

IT (θ) ≤ IX(θ).

Most statistics lose some information about θ, but there exist some statistics that can substantially reduce the
dimension without losing any information. We call these sufficient statistics.

Definition 3.3. Under regularity conditions, the sufficient statistic for θ, denoted by S = S(X), is a statistic
that satisfies:

IS(θ) = IX(θ).
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Remark 3.3.1. If the conditional distribution of the sample given a statistic T depends on θ, then there is still
some information about θ contained in the sample that T does not carry. Therefore, T is not sufficient.

Example 3.4. Let {X1, X2} be a random sample of size 2 from X ∼ Bin(m, θ). We show that T = T (X1, X2) =
X1 +X2 is sufficient.

pX1,X2|T (x1, x2|t) =
pX1,X2,T (x1, x2, t)

pT (t)

=
pX1,X2,T (x1, t− x1, t)

pT (t)

=
pX1(x1)pX2(t− x1)

pT (t)

=

(
m
x1

)(
m

t−x1

)
θt(1− θ)n−t(

2m
t

)
θt(1− θ)n−t

=

(
m
x1

)(
m

t−x1

)(
2m
t

) .

Therefore, since the conditional distribution of the sample given a statistic T does not depend on θ, we find that
T is a sufficient statistic.

We may rewrite the definition of a sufficient statistic as follows:

Definition 3.4. Let X = {X1, · · · , Xn} be a random vector of a random sample of size n from a PDF f(x|θ)
or PMF p(x|θ), where θ ∈ Θ ⊂ Rk for integer k > 1. A set of statistics {S1, S2, · · · , Sr}, where r ≥ k and
Si = Si(X) for i = 1, · · · , r, is said to be jointly sufficient if and only if the conditional distribution:{

pX|S1,··· ,Sr
(x|S1 = s1, · · · , Sr = sr, θ), Discrete case,

fX|S1,··· ,Sr
(x|S1 = s1, · · · , Sr = sr, θ), Continuous case,

does not depend on θ, for all values s1 of S1, · · · , sr of Sr.

or in the one-parameter case:

Definition 3.5. Let X = {X1, · · · , Xn} be a random sample of size n from a PDF f(x|θ) or PMF p(x|θ), where
θ ∈ Θ ⊂ R. A statistic S = S(X) is said to be sufficient if and only if the conditional distribution:{

pX|S(x|S = s, θ), Discrete case,

fX|S(x|S = s, θ), Continuous case,

does not depend on θ, for all values s of S.

Theorem 3.6. (Fisher-Neyman Factorization Theorem) Let X = {X1, · · · , Xn} be a random sample of
size n from a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk. A set of statistics {S1, · · · , Sr}, where r ≥ k and
Si = Si(X) for i = 1, · · · , r, is jointly sufficient if and only if:{

pX(x|θ) = g(S1(x), · · · , Sr(x)|θ)h(x), Discrete case,

fX(x|θ) = g(S1(x), · · · , Sr(x)|θ)h(x), Continuous case,

where g is a non-negative function of x1, · · · , xn only through the statistics S1, · · · , Sr and depends on θ, and h
is a non-negative function of x1, · · · , xn not depending on θ.

Proof.
We shall prove it in the discrete case with only one statistic. The proof in the continuous case or for more than
one statistic is out of our scope.
Note that if X ∈ B for a set B, then S(X) ∈ S(B). Therefore, for i = 1, · · · , n:

{X ∈ B} ∩ {S(X) ∈ S(B)} = {X ∈ B}.

P(X ∈ B|θ) = P(X ∈ B,S(X) ∈ S(B)|θ)
= P(X ∈ B|S(X) ∈ S(B), θ)P(S(X) ∈ S(B)|θ). (P(A ∩B|D) = P(A|B ∩D)P(B|D))
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Suppose that S is sufficient. Then by definition:

P(X ∈ B|S(X) ∈ S(B), θ) = P(Xi ∈ B|S(Xi) ∈ S(B)).

Substituting B = {x}, we get:
pX(x|θ) = pX|S(x|S(x))pS(S(x)|θ).

We find that g(S(x)|θ) = pS(S(x)|θ) and h(x) = pX|S(x|S(x)). Suppose that pX(x|θ) = g(T (x)|θ)h(x). Then:

pX|T (x|t) =
pX,T (x, t|θ)
pT (t|θ)

=

{
0, t ̸= T (x),
pX(x|θ)
pT (t|θ) , t = T (x).

Considering only the case where t = T (x), we have:

pX|T (x|t) =
pX(x|θ)∑

x:T (x)=t px(x|θ)
=

g(t|θ)h(x)∑
x:T (x)=t g(t|θ)h(x)

=
h(x)∑

x:T (x)=t h(x)
.

We find that pX|T (x|t) does not depend on θ. Therefore, by definition, T is sufficient.

Example 3.5. Let {X1, · · · , Xn} be a random sample from Bern(θ), where θ ∈ [0, 1] is unknown. The joint
PMF of the random sample is:

pX1,··· ,Xn
(x1, · · · , xn|θ) =

n∏
i=1

θxi(1− θ)1−xi

= θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi × 1

= g

(
n∑

i=1

xi

∣∣∣∣∣ θ
)

× h(x1, · · · , xn).

Therefore, S =
∑n

i=1 Xi is a sufficient statistic.

Example 3.6. Let {X1, · · · , Xn} be a random sample from N(µ, σ2), where µ and σ2 > 0 are unknown. The
joint PDF of the random sample is:

fX1,··· ,Xn
(x1, · · · , xn|µ, σ2) =

n∏
i=1

1√
2πσ2

exp

(
− (xi − µ)2

2σ2

)

=
1

(2πσ2)
n
2
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

= σ−n exp

[
− 1

2σ2

(
n∑

i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

)]
× 1

(2π)
n
2

= g

(
n∑

i=1

xi,

n∑
i=1

x2
i

∣∣∣∣∣µ, σ2

)
× h(x1, · · · , xn).

Therefore, S1 =
∑n

i=1 Xi and S2 =
∑n

i=1 X
2
i are jointly sufficient.

Example 3.7. Let {X1, · · · , Xn} be a random sample of size n from U[0, θ], where θ > 0 is unknown. The joint
PDF of the random sample is:

fX1,··· ,Xn(x1, · · · , xn|θ) =
1

θn

n∏
i=1

10≤xi≤θ

=
1

θn
10≤x(1)<x(n)≤θ (x(i) is the i-th smallest sample)

=
1

θn
1x(n)≤θ × 1x(1)≥0

= g(x(n)|θ)× h(x1, · · · , xn).

Therefore, S = X(n) = max{X1, · · · , Xn} is sufficient.
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Example 3.8. Let {X1, · · · , Xn} be a random sample of size n from U[θ − 1
2 , θ +

1
2 ], where θ is unknown. The

joint PDF of the random sample is:

fX1,··· ,Xn
(x1, · · · , xn|θ) =

n∏
i=1

1θ− 1
2≤xi≤θ+ 1

2

= 1θ− 1
2≤x(1)<x(n)≤θ+ 1

2
(x(i) is the i-th smallest sample)

= 1x(n)− 1
2≤θ≤x(1)+

1
2
× 1

= g(x(1), x(n)|θ)× h(x1, · · · , xn).

Therefore, S1 = X(1) = min{X1, · · · , Xn} and S2 = X(n) = max{X1, · · · , Xn} are jointly sufficient.

Example 3.9. Let {X1, · · · , Xn} be a random sample of size n from U[θ1, θ2], where θ1, θ2 are unknown with
θ1 < θ2 and θ1 is not a function of θ2. The joint PDF of the random sample is:

fX1,··· ,Xn(x1, · · · , xn|θ1, θ2) =
1

(θ2 − θ1)n

n∏
i=1

1θ1≤xi≤θ2

=
1

(θ2 − θ1)n
1θ1≤x(1)<x(n)≤θ2 × 1 (x(i) is the i-th smallest sample)

= g(x(1), x(n)|θ1, θ2)× h(x1, · · · , xn).

Therefore, S1 = X(1) = min{X1, · · · , Xn} and S2 = X(n) = max{X1, · · · , Xn} are jointly sufficient.

Remark 3.6.1. Sufficient statistics may not be unique because we may have more than one factorization.

Example 3.10. Let {X1, · · · , Xn} be a random sample of size n from N(µ, 1), where µ is unknown. The joint
PDF of the random sample is:

fX1,··· ,Xn(x1, · · · , xn|µ) =
n∏

i=1

1√
2π

exp

(
−1

2
(xi − µ)2

)
=

1

(2π)
n
2
exp

(
−1

2

n∑
i=1

(xi − µ)2

)
.

One way to factorize is:

1

(2π)
n
2
exp

(
−1

2

n∑
i=1

(xi − µ)2

)
=

1

(2π)
n
2
exp

[
−1

2

(
n∑

i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

)]

=
1

(2π)
n
2
exp

(
µ

n∑
i=1

xi −
n

2
µ2

)
× exp

(
−1

2

n∑
i=1

x2
i

)

= g

(
n∑

i=1

xi

∣∣∣∣∣µ
)

× h(x1, · · · , xn).

Therefore, we find that S1 =
∑n

i=1 Xi is sufficient.
Another way to factorize is:

1

(2π)
n
2
exp

(
−1

2

n∑
i=1

(xi − µ)2

)
=

1

(2π)
n
2
exp

[
−1

2

(
n∑

i=1

(xi − x)2 + n(x− µ)2

)]

=
1

(2π)
n
2
exp

(
−n

2
(x− µ)2

)
× exp

(
−1

2

n∑
i=1

(xi − x)2

)
= g(x|µ)× h(x1, · · · , xn).

Therefore, we find that S2 = X is sufficient.
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Based on the above example, we may notice that X and
∑n

i=1 Xi are functions of each other. Is any transformation
of S also sufficient? Yes, if it is one-to-one!

Lemma 3.7. (One-to-one sufficiency) Let {X1, · · · , Xn} be a random sample of size n. If a set of statistics
{S1, · · · , Sr}, where r ≥ k and Si = Si(X1, · · · , Xn) for i = 1, · · · , r, is jointly sufficient, then any set of one-to-
one functions {h1, · · · , hm} for some m, where m ≥ r and hi = hi(S1, · · · , Sr) for i = 1, · · · ,m, is also jointly
sufficient.

Example 3.11. Let {X1, · · · , Xn} be a random sample of size n from a PDF f(x|θ) or a PMF p(x|θ), where
θ ∈ Θ ⊂ Rk. Assume that

∑n
i=1 Xi and

∑n
i=1 X

2
i are jointly sufficient. We may find that:

X =
1

n

n∑
i=1

Xi,

n∑
i=1

(Xi −X)2 =

n∑
i=1

X2
i − 1

n

(
n∑

i=1

Xi

)2

.

Both are one-to-one functions of
∑n

i=1 Xi and
∑n

i=1 X
2
i .

Therefore, by Lemma 3.7, X and
∑n

i=1(Xi −X)2 are jointly sufficient.
However:

(X)2 =
1

n2

(
n∑

i=1

Xi

)2

.

It is not a one-to-one function. Therefore, (X)2 and
∑n

i=1(Xi −X)2 may not be jointly sufficient.

From previous examples, the number of sufficient statistics can sometimes be more than the number of unknown pa-
rameters. How much should data be condensed most without losing any information about the unknown parameter
θ?

Definition 3.8. A set of jointly sufficient statistics {S1, · · · , Sn} is minimal jointly sufficient if and only if
for any other set of jointly sufficient statistics {T1, · · · , Tm}, there exists a set of functions {f1, · · · , fn} such that
for i = 1, · · · , n:

Si = fi(T1, · · · , Tm).

or in the one-statistic case:

Definition 3.9. A sufficient statistic S is minimal sufficient if and only if for any other sufficient statistic T ,
there exists a function f such that:

S = f(T ).

Remark 3.9.1. Minimal jointly sufficient statistics may not be unique. We can say minimal joint sufficiency is
closed under any one-to-one transformation.

In general, it is not easy to find the minimal jointly sufficient statistics except for some special distributions. One
of those special distributions is called the exponential family, which we will discuss later.
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3.3 Relationship of Sufficiency with UMVUE

Recall that we actually want to find the UMVUE. Does sufficiency help us find the UMVUE? By the Rao-Blackwell
Theorem, it helps us find an improved unbiased estimator!

Theorem 3.10. (Rao-Blackwell Theorem) Let X = {X1, · · · , Xn} be a random sample from a PDF f(x|θ)
or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk, and let {S1, · · · , Sr} be a set of jointly sufficient statistics, where r ≥ k and
Si = Si(X) for i = 1, · · · , r. Suppose that T = T (X) is an unbiased estimator for g(θ) for a function g. Define
T ′ by E(T |S1, · · · , Sr). Then:

1. T ′ is a statistic, and it is a function of the jointly sufficient statistics.

2. T ′ is unbiased for g(θ).

3. Var(T ′) ≤ Var(T ).

Proof.

1.

T ′ = E(T |S1, · · · , Sr) =

∫ ∞

−∞
tfT |S1,··· ,Sr

(t|S1, · · · , Sr) dt

By definition, T ′ is a statistic, and it is a function of the jointly sufficient statistics {S1, · · · , Sr}.

2.
E(T ′) = E(E(T |S1, · · · , Sr)) = E(T ) = g(θ).

Therefore, T ′ is unbiased for g(θ).

3.

Var(T ′) = Var(E(T |S1, · · · , Sr))

= Var(T )− E[Var(T |S1, · · · , Sr)] ≤ Var(T ). (Var(Y ) = Var(E(Y |X)) + E[Var(Y |X)])

Example 3.12. Let {X1, · · · , Xn} be a random sample of size n from Bern(θ), where θ is unknown.

1. Since E(X1) = θ, X1 is an unbiased estimator of θ.

2. From Example 3.5, we have found that
∑n

i=1 Xi is a sufficient statistic. It is also evident that it is minimal.

3. By the Rao-Blackwell Theorem, T ′ = E(X1|
∑n

i=1 Xi) is an unbiased estimator for θ with Var(T ′) ≤
Var(X1).

We want to find T ′. Assume that we are given
∑n

i=1 Xi = s. We have:

P

(
X1 = 0

∣∣∣∣∣
n∑

i=1

Xi = s

)
=

P (X1 = 0,
∑n

i=1 Xi = s)

P (
∑n

i=1 Xi = s)

=
P(X1 = 0)P (

∑n
i=2 Xi = s)

P (
∑n

i=1 Xi = s)

=
(1− θ)

(
n−1
s

)
θs(1− θ)n−1−s(

n
s

)
θs(1− θ)n−s

=
n− s

n
.

Therefore, we have:

E

(
X1

∣∣∣∣∣
n∑

i=1

Xi = s

)
= P

(
X1 = 1

∣∣∣∣∣
n∑

i=1

Xi = s

)
= 1− P

(
X1 = 0

∣∣∣∣∣
n∑

i=1

Xi = s

)
=

s

n
.

We have found that T ′ = E (X1|
∑n

i=1 Xi) =
1
n

∑n
i=1 Xi. We may find that:

Var(T ′) =
1

n
θ(1− θ) ≤ θ(1− θ) = Var(X1).
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Remark 3.10.1. If T is already a function of jointly sufficient statistics, then T ′ would be identical to T .

Example 3.13. Let {X1, · · · , Xn} be a random sample of size n from Bern(θ), and let X be the sample mean.
We know that:

E(X) = θ.

Therefore, X is an unbiased estimator of θ. We want to find T ′. We have:

T ′ = E

(
X

∣∣∣∣∣
n∑

i=1

Xi

)
= X = T.

Remark 3.10.2. Although the Rao-Blackwell Theorem provides us with a constructive way to improve a given
unbiased estimator, it does not guarantee that the one constructed must be a UMVUE.

Example 3.14. Consider a random sample X = {X1, · · · , Xn} of size n from N(θ, 1), where θ is unknown.
Let g(θ) = θ. Consider T = T (X) = X1, and let the random sample be a set of jointly sufficient statistics
{S1, · · · , Sn}. We may find that:

E(X1|X1, · · · , Xn) = X1. (The expectation of X1 given X1 is, of course, X1)

However, from Example 3.10, we have found a better statistic S∗ = X = 1
n

∑n
i=1 Xi since:

Var(X) =
1

n
≤ Var(X1).

Therefore, T ′ = X1 is not a UMVUE.

3.4 Complete Statistics

In addition to sufficiency, we need completeness in order to find the UMVUE.

Definition 3.11. Let X = {X1, · · · , Xn} be a random sample of size n from a PDF f(x|θ) or a PMF p(x|θ),
where θ ∈ Θ ⊂ Rk for an integer k > 1. A set of statistics {T1, · · · , Tr}, where r ≥ k and Ti = Ti(X) for
i = 1, · · · , r, is said to be jointly complete if and only if for any function g:

E[g(T1, · · · , Tr)] = 0 for all θ ∈ Θ =⇒ P(g(T1, · · · , Tr) = 0) = 1 for all θ ∈ Θ.

In the one-parameter case:

Definition 3.12. Let X = {X1, · · · , Xn} be a random sample of size n from a PDF f(x|θ) or a PMF p(x|θ),
where θ ∈ Θ ⊂ R. A statistic T = T (X) is said to be complete if and only if for any function g:

E[g(T )] = 0 for all θ ∈ Θ =⇒ P(g(T ) = 0) = 1 for all θ ∈ Θ.

Remark 3.12.1. Function g(T ) or g(T1, · · · , Tr) is not an unbiased estimator for θ.

Remark 3.12.2. If there exists a function g∗ such that E[g∗(T )] = 0 but P(g∗(T ) ̸= 0) > 0, then T is not
complete. This is the same for joint completeness.
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Example 3.15. Let {X1, · · · , Xn} be a random sample of size n from Bern(θ), where θ ∈ (0, 1) is unknown.
Let T1 = X1 −X2. We can easily find that for all θ ∈ (0, 1):

E(X1 −X2) = 0 but P(X1 −X2 ̸= 0) > 0.

Therefore, T1 = X1 −X2 is not a complete statistic.
Let T2 =

∑n
i=1 Xi. For any function g,

E[g(T2)] =

n∑
i=0

g(t)

(
n

t

)
θt(1− θ)n−t = (1− θ)n

n∑
i=1

g(t)

(
n

t

)(
θ

1− θ

)t

.

Thus, E[g(T2)] = 0 for all θ ∈ (0, 1) implies that the equation
∑n

i=1 g(t)
(
n
t

) (
θ

1−θ

)t
= 0 holds for all θ ∈ (0, 1).

If not all coefficients g(t)
(
n
t

)
are equal to zero, then there are at most n solutions to the equation for all θ ∈ (0, 1).

This means only n values of θ ∈ Θ satisfy the equation, but not all θ ∈ (0, 1).
Therefore, g(t)

(
n
t

)
= 0, and thus g(t) = 0 for t = 0, · · · , n and for all θ ∈ (0, 1).

Since the only possible values of T2 =
∑n

i=1 Xi are in {0, · · · , n}, we find that:

P(g(T2) = 0) = 1.

We conclude that T2 =
∑n

i=1 Xi is complete.

Example 3.16. Let {X1, · · · , Xn} be a random sample of size n from U[0, θ], where θ > 0 is unknown. We
check if the sufficient statistic X(n) is complete. Note that for any function g,

E[g(X(n))] =

∫ ∞

−∞
g(y)fX(n)

(y) dy =
n

θn

∫ θ

0

g(y)yn−1 dy.

Therefore, if E[g(X(n))] = 0 for all θ > 0, then:∫ θ

0

g(y)yn−1 dy = 0.

Differentiating both sides with respect to θ gives g(θ)θn−1 = 0, and hence g(θ) = 0 for θ > 0. Replacing the
parameter θ with a number y, we get g(y) = 0 for y ∈ (0, θ] for all θ > 0.
Since 0 ≤ X(n) ≤ θ, we find that for all θ ∈ Θ:

P(g(X(n)) = 0) = 1.

Therefore, X(n) is complete.

3.5 Exponential Family

Most of the time, it is quite difficult to check the completeness and minimal sufficiency of a statistic by definition,
especially for joint completeness. However, there is one special distribution for which we can check these properties
easily. It is called the exponential family.

Definition 3.13. Suppose that a random variable X has a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk for
an integer k > 1. If we find that:

1. supp(X) does not depend on θ.

2. The PDF or PMF of X can be written in the form:

exp

a(θ) + b(x) +

k∑
j=1

cj(θ)dj(x)

 ,

where a(θ), b(x), cj(θ), and dj(x) for j = 1, · · · , k are real-valued functions.

then the distribution of X is said to be a member of the k-parameter exponential family.
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or in the one-parameter case,

Definition 3.14. Suppose that a random variable X has a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ R. If
we find that:

1. supp(X) does not depend on θ.

2. The PDF or PMF of X can be written in the form:

exp[a(θ) + b(x) + c(θ)d(x)],

where a(θ), b(x), c(θ), and d(x) are real-valued functions.

then the distribution of X is said to be a member of the one-parameter exponential family.

Remark 3.14.1. A distribution whose support depends on θ does not belong to the exponential family, e.g.,
U[0, θ].

Remark 3.14.2. Most of the parametric distributions we discussed are members of an exponential family, e.g.,
the normal distribution, gamma distribution, Poisson distribution, binomial distribution, and so on.

The following results show that we can find complete and minimal sufficient statistics from the exponential family.

Theorem 3.15. Let X = {X1, · · · , Xn} be a random sample of size n from a distribution in the one-parameter
exponential family with a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ R, that can be written in the form:

exp[a(θ) + b(x) + c(θ)d(x)].

Then,
∑n

i=1 d(Xi) is a complete and minimal sufficient statistic.

Theorem 3.16. Let X = {X1, · · · , Xn} be a random sample of size n from a distribution in the k-parameter
exponential family with a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk for an integer k > 1, that can be
written in the form:

exp

a(θ) + b(x) +

k∑
j=1

cj(θ)dj(x)

 .

Then the set {
∑n

i=1 d1(Xi), · · · ,
∑n

i=1 dk(Xi)} is a set of jointly complete and minimal sufficient statistics.

Example 3.17. Consider a random sample from Poisson(λ), where λ ∈ (0,∞) is unknown. We have:

p(x|λ) = λxe−λ

x!
= exp[−λ− ln(x!) + x lnλ].

Since the support {0, 1, · · · } does not depend on λ, by Theorem 3.15,
∑n

i=1 Xi is a complete and minimal
sufficient statistic.

Example 3.18. Consider a random sample from Bern(θ), where θ ∈ (0, 1) is unknown. We have:

p(x|θ) = θx(1− θ)1−x = exp

[
ln(1− θ) + x ln

(
θ

1− θ

)]
.

Since the support {0, 1} does not depend on θ, by Theorem 3.15,
∑n

i=1 Xi is a complete and minimal sufficient
statistic.

Example 3.19. Consider a random sample from N(µ, σ2), where µ and σ > 0 are unknown. We have:

f(x|µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
= exp

(
− µ2

2σ2
− 1

2
ln(2πσ2) +

µ

σ2
x− 1

2σ2
x2

)
.

Since the support does not depend on µ and σ2, by Theorem 3.16,
∑n

i=1 Xi and
∑n

i=1 X
2
i are jointly complete

and minimal sufficient statistics.



3.6. RELATIONSHIP OF COMPLETENESS AND SUFFICIENCY WITH UMVUE 47

3.6 Relationship of completeness and sufficiency with UMVUE

We still haven’t explained why a complete and minimal sufficient statistic can lead to the UMVUE. This is due to
the following theorem.

Theorem 3.17. (Lehmann-Scheffé Theorem) Let CS be a complete and (minimal) sufficient statistic. If
there exists a function h(CS) that is unbiased for g(θ), then h(CS) is the unique UMVUE of g(θ).

Theorem 3.18. Let CS be a complete and (minimal) sufficient statistic. If E[f(X)] = g(θ) for all θ, then
h(CS) = E[f(X)|CS] is the UMVUE for g(θ).

Remark 3.18.1. From this theorem, we can formulate some strategies to find the UMVUE, which is a function
of CS:

1. Guess the correct form of the function of CS.

2. Solve for h(CS) using E[h(CS)] = g(θ).

3. Use the Rao-Blackwell Theorem to construct h(CS) by guessing or finding any unbiased estimator T for
g(θ) and then evaluating h(CS) = E(T |CS).

Example 3.20. Let {X1, · · · , Xn} be a random sample of size n fromX ∼ Exp(θ), where θ ∈ (0,∞) is unknown.
Find the UMVUE of g(θ) = θ. We try Strategy 1.
We have θ = 1

E(X) . Since the exponential distribution of X belongs to an exponential family, we can find that

CS =
∑n

i=1 Xi. We suspect that the UMVUE is related to n∑n
i=1 Xi

. For n > 1, since Exp(θ) = Gamma(1, θ),

E
(

1∑n
i=1 Xi

)
=

∫ ∞

0

θn

xΓ(n)
xn−1e−θx dx =

θ

Γ(n)

∫ ∞

0

θ(θx)n−2e−θx dx =
θΓ(n− 1)

Γ(n)
=

θ

n− 1
.

Therefore, we have found that n−1∑n
i=1 Xi

is the UMVUE.

Example 3.21. We continue the example above. This time we try Strategy 2, which involves solving for h(CS)
using E[h(CS)] = g(θ) = θ. ∫ ∞

0

h(x)
θn

Γ(n)
xn−1e−θx dx = θ,∫ ∞

0

h(x)
θn−1

Γ(n)
xn−1e−θx dx = 1,∫ ∞

0

(
h(x)

x

n− 1

)
θn−1

Γ(n− 1)
x(n−1)−1e−θx dx = 1.

This is only true if h(x) x
n−1 = 1 for all x > 0. Thus, h(x) = n−1

x , and therefore:

h

(
n∑

i=1

Xi

)
=

n− 1∑n
i=1 Xi

.

Since it is unbiased for θ and is a function of CS, by the Lehmann-Scheffé Theorem, it is the UMVUE of θ.
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Example 3.22. Let {X1, · · · , Xn} be a random sample of size n from Poisson(λ), where λ ∈ (0,∞) is unknown.
Find the UMVUE of g(λ) = e−λ. We try Strategy 3.
From Example 3.17,

∑n
i=1 Xi is a complete and minimal sufficient statistic. Note that g(λ) = e−λ = P(X1 = 0) =

1X1=0, and thus it is a trivial unbiased estimator of g(λ). By the Rao-Blackwell Theorem, E(1X1=0|
∑n

i=1 Xi)
is unbiased for g(λ). By the Lehmann-Scheffé Theorem, it is the unique UMVUE of g(λ). We compute the
UMVUE.
For n = 1,

E

(
1X1=0

∣∣∣∣∣
n∑

i=1

Xi

)
= E(1X1=0|X1) = P(X1 = 0|X1) = 1X1=0.

For n > 1,

E

(
1X1=0

∣∣∣∣∣
n∑

i=1

Xi = s

)
= P

(
X1 = 0

∣∣∣∣∣
n∑

i=1

Xi = s

)
=

P(X1 = 0,
∑n

i=1 Xi = s)

P(
∑n

i=1 Xi = s)

=
P(X1 = 0)P(

∑n
i=2 Xi = s)

P(
∑n

i=1 Xi = s)

=
e−λe−(n−1)λ[(n− 1)λ]ss!

e−nλ(nλ)ss!

=

(
n− 1

n

)s

.

Therefore, the UMVUE for g(λ) = e−λ is:

E

(
1X1=0

∣∣∣∣∣
n∑

i=1

Xi

)
=

{
1X1=0, n = 1,(
n−1
n

)∑n
i=1 Xi

, n > 1.

Example 3.23. Let {X1, · · · , Xn} be a random sample of size n from U[0, θ], where θ > 0 is unknown. Since
the uniform distribution is not in an exponential family, we cannot use Theorem 3.15 to find a complete and
minimal sufficient statistic.
From Example 3.16, we have found that X(n) is a complete and sufficient statistic. By checking for unbiasedness,

E(X(n)) =
n

n+ 1
θ.

Therefore, by the Lehmann-Scheffé Theorem, the UMVUE of θ is n+1
n X(n).

3.7 Cramér-Rao Inequality

Recall Theorem ??, where we claim that a sequence of MLE is asymptotically efficient, which means that:

I−1
X (θ)

is the lowest possible bound for any unbiased estimator. This is due to the Cramér-Rao Inequality (C-R Inequality).

Theorem 3.19. (Cramér-Rao Inequality) Under the regularity conditions, the variance of an unbiased es-
timator T (X) = T (X1, · · · , Xn) for θ, based on a set of random variables X = {X1, · · · , Xn} from their joint
PDF fX1,··· ,Xn

(x1, · · · , xn|θ), satisfies the following inequality:

Var(T (X)) ≥ 1

IX1,··· ,Xn
(θ)

=
1

E
[

d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ)
]2 .

The lower bound is called the Cramér-Rao lower bound (CRLB).

Remark 3.19.1. The Cramér-Rao Inequality can also be written as:

Var(T (X)) ≥ 1

−E
[

d2

dθ2 ln fX1,··· ,Xn
(X1, · · · , Xn|θ)

] .
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Remark 3.19.2. If X is a random sample of size n, then we have:

Var(T (X)) ≥ 1

nIX1
(θ)

=
1

nE
[

d
dθ ln fX1

(X1|θ)
]2 =

1

−nE
[

d2

dθ2 ln fX1(X1|θ)
] .

Example 3.24. Let X = {X1, · · · , Xn} be a random sample of size n from N(θ, σ2), where σ2 is known and θ
is unknown. The CRLB for θ is:

1

nIX1(θ)
=

σ2

n
.

Example 3.25. Let X = {X1, · · · , Xn} be a random sample of size n from Bern(p), where p is unknown. The
CRLB for p is:

1

nIX1(p)
=

p(1− p)

n
.

Often, we want to estimate a function of θ, g(θ), instead of θ.

Theorem 3.20. Under the regularity conditions, if T (X) = T (X1, · · · , Xn) is an unbiased estimator for g(θ),
then the Cramér-Rao Inequality for g(θ) is:

Var(T (X)) ≥
[

d
dθg(θ)

]2
IX1,··· ,Xn

(θ)
=

[
d
dθg(θ)

]2
E
[

d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ)
]2 .

Proof.
Let U = d

dθ ln fX(X|θ) and V = T (X). We have:

−1 ≤ cov(U, V )√
Var(U)Var(V )

≤ 1 =⇒ (cov(U, V ))2

Var(U)
≤ Var(V ).

We may find that Var(U) = Var
(

d
dθ ln fX(X|θ)

)
= IX(θ). In addition,

cov

(
d

dθ
ln fX(X|θ), T (X)

)
= E

[
T (X)

d

dθ
ln fX(X|θ)

]
− E

[
d

dθ
ln fX(X|θ)

]
E[T (X)]

= E
[
T (X)

d

dθ
ln fX(X|θ)

]
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
T (x)

(
d

dθ
ln fX(x|θ)

)
fX(x|θ) dx

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
T (x)

d

dθ
fX(x|θ) dx

=
d

dθ
E[T (X)]

=
d

dθ
g(θ).

Therefore, we have:

Var(T (X)) ≥
[

d
dθg(θ)

]2
IX(θ)

.

Remark 3.20.1. Since the CRLB is the lowest bound of variance for any unbiased estimator, any unbiased
estimator whose variance achieves the CRLB for g(θ) is the UMVUE for g(θ).

Remark 3.20.2. It is not necessary for a UMVUE to have a variance equal to the CRLB.

Example 3.26. Let {X1, · · · , Xn} be a random sample of size n from Exp(θ), where θ ∈ (0,∞) is unknown.

The CRLB of θ is θ2

n . From Example 3.20, we have found that n−1∑n
i=1 Xi

is the UMVUE of θ when n > 1.

After some tedious calculations, for n > 2, we find that Var
(

n−1∑n
i=1 Xi

)
= θ2

n−2 ≥ θ2

n .
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When does the equality for the C-R inequality hold?

Theorem 3.21. Under the regularity conditions, the C-R equality holds if and only if:

d

dθ
ln fX1,··· ,Xn

(X1, · · · , Xn|θ) = A(θ, n)[T (X1, · · · , Xn)− g(θ)],

where A(θ, n) is a non-zero function. The statistic T (X1, · · · , Xn) is a UMVUE of g(θ).

This theorem has an interesting result: if we can write d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ) as A(θ, n)[T (X1, · · · , Xn) −
g(θ)], then the statistic must be a UMVUE.

Lemma 3.22. If T (X1, · · · , Xn) is a UMVUE of g(θ) such that the C-R equality holds, then aT (X1, · · · , Xn)+b
is a UMVUE of ag(θ) + b, where a ̸= 0.

Proof.

d

dθ
ln fX1,··· ,Xn

(X1, · · · , Xn|θ) = A(θ, n)[T (X1, · · · , Xn)− g(θ)] =
A(θ, n)

a
[(aT (X1, · · · , Xn) + b)− (ag(θ) + b)].

By setting A∗(θ, n) = A(θ,n)
a , we find that aT (X1, · · · , Xn) + b is a UMVUE of ag(θ) + b.

Example 3.27. Let {X1, · · · , Xn} be a random sample of size n from Poisson(λ), where λ is unknown.

d

dλ
ln pX1,··· ,Xn

(X1, · · · , Xn|λ) =
d

dλ
ln

(
n∏

i=1

λXie−λ

Xi!

)

=
d

dλ

n∑
i=1

[Xi lnλ− λ− ln(Xi!)]

=

n∑
i=1

(
Xi

λ
− 1

)
=

n

λ
(X − λ).

Therefore, by Theorem 3.21, X is a UMVUE of λ, and:

Var(X) =
1

nIX1
(λ)

=
λ

n
.

Remark 3.22.1. For any particular function of θ other than a Euclidean transformation, Theorem 3.21 is not
useful.

Example 3.28. Let {X1, · · · , Xn} be a random sample of size n from Exp(θ), where θ is unknown.

d

dθ
ln fX1,··· ,Xn

(X1, · · · , Xn|θ) =
d

dθ
ln

(
n∏

i=1

θe−θXi

)

=
d

dθ

n∑
i=1

(ln θ − θXi)

=

n∑
i=1

(
1

θ
−Xi

)
= −n

(
X − 1

θ

)
.

Therefore, by Theorem 3.21, X is a UMVUE of 1
θ , and:

Var(X) =
1

nIX1
(θ)

=
θ2

n
.

However, since θ cannot be written as a Euclidean transformation of 1
θ , we cannot use the theorem to find the

UMVUE of θ.
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Remark 3.22.2. Theorem 3.21 can only be used under regularity conditions. For instance, for U[0, θ], we
cannot use this theorem.



52 CHAPTER 3. UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR



Chapter 4

Hypothesis Testing

This chapter will primarily focus on comparing different unbiased point estimators.
In engineering and science fields, people usually hypothesize something about a system. Before proving the conjec-
ture using experimental data, they need to define a hypothesis.

Definition 4.1. A statistical hypothesis is an assertion or conjecture about the random variable of interest.
If a parametric distribution is considered, then a statistical hypothesis can be a conjecture about the true value
of the unknown parameters of the parametric distribution.

Example 4.1. An engineer decides, based on sample data, whether the true average lifetime of a certain kind
of tire is at least 22, 000 miles. The engineer has to test the hypothesis that θ in Exp(θ) is at least 22, 000.

Example 4.2. An agronomist wants to decide, based on experiments, whether one kind of fertilizer produces
a higher yield of soybeans than another. The agronomist has to test the hypothesis that µ1 > µ2 from two
distributions N(µ1, σ

2
1) and N(µ2, σ

2
2).

Example 4.3. A manufacturer of pharmaceutical products decides, based on samples, whether 90% of all pa-
tients given a new medication will recover from a certain disease. The manufacturer has to test the hypothesis
that θ in Bin(n, θ) equals 0.90.

4.1 Null and Alternative Hypotheses

The hypothesis of interest is related to a particular class of θ, say Θ0, and its complement Θ1. These two classes
are subsets of the parameter space Θ of θ. We have Θ0 ∪Θ1 ⊆ Θ and Θ0 ∩Θ1 = ∅.

Definition 4.2. The hypothesis with θ ∈ Θ0 is the null hypothesis H0, and the hypothesis with θ ∈ Θ1 is the
alternative hypothesis.

Remark 4.2.1. We usually use signs with implied equality in H0.

Definition 4.3. The hypothesis is simple if the parametric distribution would be fully specified under the
hypothesis. Otherwise, the hypothesis is composite.

Example 4.4. Using Example 4.1, we have: {
H0 : θ ≥ 22, 000,

H1 : θ < 22, 000.

Both H0 and H1 are composite because they do not specify the parameter.

Example 4.5. Using Example 4.3, we have: {
H0 : θ = 0.9,

H1 : θ ̸= 0.9.

H0 is simple, while H1 is composite.

53
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In hypothesis testing, we want to see whether or not we can find evidence to say that H0 is false.

Remark 4.3.1. Hypothesis testing usually follows these three steps:

1. Determine H0 and H1.

2. Under H0, define a rare event, an event that happens with a very small probability in one experiment with
n data points.

3. Collect data.

(a) If the data causes the rare event to happen, it contradicts H0. This means we can say that H0 is false
and reject H0.

(b) If the data does not cause the rare event to happen, it does not contradict H0. This means we cannot
say that H0 is false, and we do not reject H0.

Remark 4.3.2. Not rejecting H0 does not mean we accept H0. It just means there is no sufficient evidence to
reject H0. The whole idea is to try gathering enough evidence to have great confidence that H0 is false and H1

is true.

Example 4.6. We want to know whether or not a coin is fair. Consider a random experiment of flipping the
coin 10 times. We may determine that:{

H0 : P({H}) = P({T}) = 0.5,

H1 : P({H}) ̸= P({T}).

Under H0, we define the event of getting 10 tails as the rare event under H0 since the probability of getting 10
tails in one experiment is 0.510 ≈ 0.00098.
We can then perform the experiment to collect data by flipping the coin 10 times. If we get 10 tails, then the
collected data tells us that getting 10 tails is not a rare event, which contradicts H0. Therefore, we have evidence
to suspect the reliability of H0 and thus reject H0 and accept H1.

4.2 Test Errors and Error Probabilities

After we decide the null and alternative hypotheses, we need to determine a test statistic, i.e., the point estimator,
to construct a test for rejecting or not rejecting the null hypothesis.

Definition 4.4. The non-rejection region C0 is a subset of Θ such that we do not reject H0, i.e.,

C0 = {x : Not reject H0}.

The rejection region C1 is a subset of Θ such that we reject H0, i.e.,

C1 = {x : Reject H0}.

However, there is no perfect test statement due to the randomness of the sample data. Each test would lead to the
following two kinds of errors.

Definition 4.5. A Type I Error is the error of rejecting H0 when it is true. A Type II Error is the error of
not rejecting H0 when it is false.

Not reject H0 Reject H0

If H0 is true No error Type I Error
If H0 is false Type II Error No error
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We may define their corresponding probabilities.

Definition 4.6. The Type I error probability, denoted by γ(θ), is the probability of rejecting H0 for θ ∈ Θ0.

γ(θ) = P(Reject H0|θ) = P(X ∈ C1|θ).

The Type II error probability, denoted by β(θ), is the probability of not rejecting H0 for θ ∈ Θ1.

β(θ) = P(Not reject H0|θ) = P(X ∈ C0|θ).

Remark 4.6.1. Since we cannot control γ(θ) and β(θ) at the same time, conventionally, we assign an upper
bound to γ(θ) over Θ0 and find a test with β(θ) as small as possible. If we are dealing with the continuous case,

sup
θ∈Θ0

γ(θ) = α.

If we are dealing with the discrete case,
sup
θ∈Θ0

γ(θ) ≤ α.

We usually call α the significance threshold or significance level. sup can be replaced with max if it exists.

Remark 4.6.2. We use a point estimator T (X) to formulate our test with:

1. One-sided right tests: C1 = {x : T (x) > k} or H1 : θ > θ0.

2. One-sided left tests: C1 = {x : T (x) < k} or H1 : θ < θ0.

3. Two-sided tests: C1 = {x : T (x) < k1 or T (x) > k2} or H1 : θ ̸= θ0.

For one-sided tests, k can be obtained by solving:

sup
θ∈Θ0

P(X ∈ C1|θ)

{
= α, Continuous case,

≤ α, Discrete case.

For two-sided tests, k1 and k2 can be obtained by solving:

P(T (X) < k1|θ0) =
α

2
, P(T (X) > k2|θ0) =

α

2
.

If they cannot be found exactly (such as when we cannot determine the exact distribution of T (X)), then we
can approximate them by using the limiting distribution of T (X) or simplified terms.

Example 4.7. Assume that we have a random sample X ∼ N(µ, σ2), where σ is known. We want to see if
µ ≥ 3423 with a 2% significance level. Let X be a random sample of size n from X. We define the test as follows:

T (X) = X,

{
H0 : µ ≥ 3423,

H1 : µ < 3423.
C1 = {x : x < k}.

We find k by solving:
0.02 = max

µ≥3423
P(X < k|µ).

It is obvious to see that:

0.02 = max
µ≥3423

P
(
Z <

√
n(k − µ)

σ

)
= P

(
Z <

√
n(k − 3423)

σ

)
, 0.98 = P

(
Z ≥

√
n(k − 3423)

σ

)
.

Therefore, we can find that:

k = 3423− z0.02
σ√
n
= 3423 + z0.98

σ√
n
.

We would reject H0 at α = 0.02 if x < 3423− z0.02
σ√
n
.

However, in many cases, θ may not be µ or σ2. What do we do if the distribution of T (X) cannot be easily
determined?
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4.3 Likelihood Test

Similar to finding the MLE in Chapter 2, we also have a general method called the likelihood ratio test.

Definition 4.7. The Likelihood Ratio Test (LRT) for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 at a
significance level of α is a test with a rejection region:

C1 = {x : λ(x) ≤ k},

where k ∈ (0, 1) satisfies maxθ∈Θ0
P(λ(X) ≤ k|θ) = α, and the LRT statistic λ is given by:

λ(x) =
L(θ̂0)

L(θ̂)
,

with MLE θ̂0 of θ over Θ0 and MLE θ̂ over Θ∗ = Θ0 ∪Θ1 ⊆ Θ.

Remark 4.7.1. Since Θ0 ⊂ Θ0 ∪Θ1, we can see that L(θ̂0) ≤ L(θ̂). Therefore, 0 < λ(x) ≤ 1.

Remark 4.7.2. If λ(x) is close to 0, then it suggests that the data is not compatible with H0. Therefore, H0

should be rejected.

Remark 4.7.3. If the hypothesis is simple, then there is no point in finding the MLE. We use the hypothesized
value of θ instead of the MLE.

Example 4.8. Let X = {X1, · · · , Xn} be a random sample of size n from Exp(θ), where θ is unknown. We can
construct an LRT at a significance level of α: {

H0 : θ = θ0,

H1 : θ > θ0,

where θ0 is known and positive. Note that Θ0 = {θ0} and Θ1 = (θ0,∞). The parameter space Θ∗ is restricted
to be at least θ0. We may find that:

d

dθ
l(θ) =

n

θ
− nx.

Therefore, the MLE of θ over Θ∗ is:

θ̂ = max

{
θ0,

1

x

}
.

The likelihood ratio test statistic can be found by:

L(θ̂0) = θn0 e
−nθ0x, L(θ̂) =

{(
1
x

)n
e−n, if 1

x > θ0,

θn0 e
−nθ0x, if 1

x ≤ θ0.

λ(x) =

{
θn
0 e−nθ0x

(x)−ne−n , if 1
x > θ0,

1, if 1
x ≤ θ0.

=

{
(θ0x)

ne−n(θ0x−1), if 1
x > θ0,

1, if 1
x ≤ θ0.

Therefore, we reject H0 if 1
x > θ0 and (θ0x)

ne−n(θ0x−1) ≤ k. But how do we determine k?

If the term (θ0x)
ne−n(θ0x−1) is a function of some quantity y, where the distribution of Y can be easily determined,

then the test based on y will be equivalent to the original test.
Let y = θ0x. The function yne−n(y−1) attains its maximum at y = 1. Therefore,

C1 =
{
x : y < 1 and yne−n(y−1) ≤ k

}
= {x : y ≤ K ∈ (0, 1)} =

{
x :

n∑
i=1

xi ≤
nK

θ0
= K ′

}
.

Therefore, we can reject H0 when
∑n

i=1 xi ≤ K ′, where
∑n

i=1 Xi ∼ Gamma(n, θ). K ′ can be determined by:

P

(
n∑

i=1

Xi ≤ K ′

∣∣∣∣∣ θ0
)

= α.
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Example 4.9. Let X = {X1, · · · , Xn} be a random sample of size n from N(θ, σ2), where both θ and σ are
unknown. We want to test, at a significance level of α, the following hypotheses:{

H0 : θ = θ0,

H1 : θ ̸= θ0.

Since H0 is simple, we have:

θ̂0 = θ0, σ̂2
0 =

1

n

n∑
i=1

(xi − θ0)
2.

To find the denominator, we determine the MLE of θ and σ2:

θ̂ = x, σ̂2 =
1

n

n∑
i=1

(xi − x)2.

Therefore,

L(θ̂0, σ̂
2
0) =

(
2π

n

n∑
i=1

(Xi − θ0)
2

)−n
2

exp

(
−
∑n

i=1(Xi − θ0)
2

2
n

∑n
i=1(Xi − θ0)2

)

=

(
2π

n

n∑
i=1

(Xi − θ0)
2

)−n
2

exp
(
−n

2

)
,

L(θ̂, σ̂2) =

(
2π

n

n∑
i=1

(Xi −X)2

)−n
2

exp

(
−
∑n

i=1(Xi −X)2

2
n

∑n
i=1(Xi −X)2

)

=

(
2π

n

n∑
i=1

(Xi −X)2

)−n
2

exp
(
−n

2

)
,

λ(X) =
L(θ̂0, σ̂

2
0)

L(θ̂, σ̂2)
=

(∑n
i=1(Xi − θ0)

2∑n
i=1(Xi −X)2

)−n
2

.

By the CLT, we have that if θ = θ0,

√
n(X − θ0)

σ
∼ N(0, 1),

n(X − θ0)
2

σ2
∼ χ2(1).

By Theorem 1.29, we find that:

1

σ2

n∑
i=1

(Xi −X)2 ∼ χ2(n− 1).

Therefore, using the definition of the F-distribution, define F by:

F = (n− 1)
n(X − θ0)

2∑n
i=1(Xi −X)2

=
n(X−θ0)

2

σ2∑n
i=1(Xi−X)2

σ2(n−1)

∼ F (1, n− 1).

We may find that:

λ(X) =

(∑n
i=1(Xi − θ0)

2∑n
i=1(Xi −X)2

)−n
2

=

(
1 +

∑n
i=1(X − θ0)

2∑n
i=1(Xi −X)2

)−n
2

=

(
1 +

F

n− 1

)−n
2

.

We can now modify the problem to:

λ(X) ≤ k =⇒ F ≥ (n− 1)
(
k−

2
n − 1

)
= K ′.

Finally, we find that:
α = P(λ(X) ≤ k) = P(F ≥ K ′).

We can find that K ′ = fα,(1,n−1). Therefore, we reject H0 if F ≥ fα,(1,n−1).
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For tests with large n, if the large-n results such as the CLT can be used for the point estimator, then we can easily
draw the conclusion.

Example 4.10. Consider the MLE θ̂n(X). Similar to Remark 2.16.1, we can use:

T1 =

√
−l′′(θ̂n)(θ̂n(X)− θ0) → N(0, 1).

For H1 : θ > θ0, we reject H0 at a significance level of α if the actual value of T1 > zα.
For H1 : θ < θ0, we reject H0 at a significance level of α if the actual value of T1 < zα.

However, for the likelihood ratio test, it is a bit more complicated. We only consider the cases with one unknown
parameter for two-sided tests. Since the parameter space is restricted (θ ≥ θ0 or θ ≤ θ0), the result for the
large-sample likelihood ratio test has to be further adjusted. We omit it due to its complexity.

Definition 4.8. The Large-Sample Likelihood Ratio Test Statistic is defined by:

XL = −2 lnλ(X) = 2
[
l
(
θ̂n(X)

)
− l(θ0)

]
.

Theorem 4.9. Under H0, the large-sample likelihood ratio test statistic follows an asymptotic χ2(1). Thus, we
reject H0 at a significance level of α when:

xL > χ2
α,1,

which is the (1− α)-th quantile of the chi-square distribution with 1 degree of freedom.

Remark 4.9.1. XL and T 2
1 are asymptotically equivalent for two-sided tests.

Example 4.11. Suppose the following data is from Exp(λ):

1, 3, 5, 8, 10, 15, 18, 19, 22, 25.

Perform a likelihood ratio test with H0 : λ = 0.06 against H1 : λ ̸= 0.06 and draw a conclusion at a significance
level of 0.05. Use the fact that χ2

0.95,1 = 3.841459.
We have:

l(λ) = n lnλ− λ

n∑
i=1

xi.

Over Θ = (0,∞), the MLE for λ is λ̂n = 1
x . Therefore,

l(λ̂n) = −n lnx− n = −35.33697.

Since H0 is simple, we have:
l(λ̂0) = n ln(0.06)− 0.06(126) = −35.69411.

Therefore, the actual value of XL is 2(−35.33697 + 35.69411) = 0.7143 ≤ χ2
0.95,1. We do not reject H0 at

α = 0.05.
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4.4 Power Function and Power of a Test Statement

In parameter estimation, we have many point estimators to estimate unknown parameters. In hypothesis testing,
we can also use different test statistics to construct tests for testing H0 against H1. Which one of them is the best?
We need a quantity for comparison.

Definition 4.10. Let X = {X1, · · · , Xn}. For a test, the power function Q : Θ → [0, 1] is defined for θ ∈ Θ
as:

Q(θ) =

{∑
x∈C1

pX(x|θ), Discrete case,∫
C1

fX(x|θ) dx, Continuous case.

Remark 4.10.1. The power function of a test is the probability of rejecting H0. In particular, for θ ∈ Θ1,
Q(θ) = 1− β(θ) is called the power of the test at θ, which is the probability of rejecting H0 at θ ∈ Θ1.

Remark 4.10.2. In terms of the power function, our goal is to find a test for which the value of the power at
θ ∈ Θ1 is as large as possible, subject to the condition that:

max
θ∈Θ0

Q(θ) = α.

Given two tests, we would first require them to have the same significance level α. How do we compare them?

Definition 4.11. A test is said to be more powerful at a value θ∗ ∈ Θ1 if it has a higher power at θ∗.
A test is said to be the most powerful at θ∗ if it is more powerful than any other test at θ∗.
A test is said to be uniformly most powerful (UMP) if it is the most powerful for all θ ∈ Θ1. More precisely,
the UMP test at a significance level α is the test with a power function Q(θ) satisfying:

1. maxθ∈Θ0
Q(θ) = α,

2. Q(θ) ≥ Q∗(θ) for all θ ∈ Θ1 for any test with Q∗(θ).

Remark 4.11.1. The UMP test in hypothesis testing has a similar role to the best estimator under the criterion
of MSE in parameter estimation.

Remark 4.11.2. In general, a UMP test does not exist for two-sided tests. To address this, we usually consider
a smaller class, which is the class of unbiased estimators.

We first consider how to find the UMP test for simple tests.
For testingH0 : θ = θ0 againstH1 : θ = θ1 at a significance level α = γ(θ0) = Q(θ0) and its power Q(θ1) = 1−β(θ1),
we have the Neyman-Pearson Lemma.

Lemma 4.12. (Neyman-Pearson Lemma) Let X = {X1, · · · , Xn} be a random sample of size n from a PDF
f(x|θ) or a PMF p(x|θ), where θ ∈ Θ = {θ0, θ1} and x is its realization. Then, at a significance level α, a test
with a rejection region:

C1 =

{
x :

L(θ0)

L(θ1)
≤ k

}
is the UMP test for testing H0 : θ = θ0 against H1 : θ = θ1, at a significance level α, where k > 0.

Theorem 4.13. The likelihood ratio test for a simple test is a UMP test.

Proof.
For a simple test, the LRT at a significance level of α has a rejection region:

C1 = {x : λ(x) ≤ k < 1},

where P(λ(X) ≤ k|θ0) = α and:

λ(x) =
L(θ0)

max{L(θ0), L(θ1)}
=

{
1, if L(θ0) ≥ L(θ1),
L(θ0)
L(θ1)

, if L(θ0) < L(θ1).

Therefore, we have:

C1 = {x : λ(x) ≤ k < 1} =

{
x :

L(θ0)

L(θ1)
≤ k < 1

}
.

By the Neyman-Pearson Lemma, the LRT is a UMP test for a simple test.
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Example 4.12. Let X = {X1, · · · , Xn} be a random sample of size n from N(θ, σ2
0), where θ is unknown but

σ2
0 is known. We want to construct a UMP test for testing H0 : θ = θ0 against H1 : θ = θ1 at a significance level

of α, where θ0 < θ1. Note that:

L(θ0)

L(θ1)
= exp

(
n[θ21 − θ20 − 2x(θ1 − θ0)]

2σ2
0

)
.

Thus, we can modify the rejection region into:

C1 =

{
x :

L(θ0)

L(θ1)
≤ k

}
=

{
x : x ≥ 1

2
(θ0 + θ1)−

σ2
0 ln k

n(θ1 − θ0)
= K

}
.

Since X ∼ N(θ,
σ2
0

n ), we can determine K by:

α = P(X ≥ K|θ0) = P
(
Z ≥

√
n(K − θ0)

σ0

)
.

We have that K = θ + zα
σ0√
n
. Therefore, by the Neyman-Pearson Lemma, the UMP test for testing H0 : θ = θ0

against H1 : θ = θ1 at a significance level of α is the test with a rejection region:

C1 =

{
x : x ≥ θ0 + zα

σ0√
n

}
,

where θ0 < θ1.

The Neyman-Pearson Lemma only provides us with a way of constructing a UMP test for a simple test. For UMP
one-sided tests, we need another result. Without loss of generality, we only discuss how to find the UMP test for
a one-sided right test.

Definition 4.14. A distribution has the property of monotone likelihood ratio (MLR) in T if the likelihood

ratio L(θ′)
L(θ′′) is non-decreasing in T for θ′ > θ′′, where at least one of L(θ′) and L(θ′′) is positive.

Example 4.13. Let {X1, · · · , Xn} be a random sample of size n from Bern(θ), where θ ∈ (0, 1) is unknown.
For θ′ > θ′′, the likelihood ratio:

L(θ′)

L(θ′′)
=

(
1− θ′

1− θ′′

)n(
θ′(1− θ′′)

θ′′(1− θ′)

)∑n
i=1 xi

is non-decreasing in T =
∑n

i=1 xi because
θ′(1−θ′′)
θ′′(1−θ′) > 1. Therefore, MLR holds for Bern(θ) in T =

∑n
i=1 xi.

Example 4.14. Let {X1, · · · , Xn} be a random sample of size n from N(θ, σ2
0), where θ is unknown but σ2

0 is
known. For θ′ > θ′′, the likelihood ratio:

L(θ′)

L(θ′′)
= exp

(
n[(θ′′)2 − (θ′)2 − 2x(θ′′ − θ′)]

2σ2
0

)
is non-decreasing in T = x. Therefore, MLR holds for N(θ, σ2

0) in T = x.

We now have some theorems that we can use to obtain the UMP one-sided right test.

Theorem 4.15. (Karlin-Rubin Theorem) Let X = {X1, · · · , Xn} be a random sample of size n from a
distribution with a parameter θ having MLR in T (x), where x is the realization of X. At a significance level of
α, a test with a rejection region:

C1 = {x : T (x) ≥ K}

is a UMP one-sided right test for H0 : θ ≤ θ0 against H1 : θ > θ0 at a significance level α for some K. The test
is also a UMP one-sided right test for H0 : θ = θ0 against H1 : θ > θ0.
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Theorem 4.16. (Karlin-Rubin Theorem with sufficient statistic) Let X = {X1, · · · , Xn} be a random
sample from a distribution with a parameter θ, and let S(X) be a sufficient statistic for θ. If the distribution of
S(X) has MLR in itself, then at a significance level α, a test with a rejection region:

C1 = {x : S(x) ≥ K}

is a UMP one-sided right test for H0 : θ ≤ θ0 against H1 : θ > θ0 at a significance level α for some K. The test
is also a UMP one-sided right test for H0 : θ = θ0 against H1 : θ > θ0.

Example 4.15. Let {X1, · · · , Xn} be a random sample of size n from N(θ, σ2
0), where θ is unknown but σ2

0 is
known. We aim to construct a UMP test for testing at a significance level α:{

H0 : θ ≤ θ0,

H1 : θ > θ0.

The MLE of θ over Θ0 is min{x, θ0}. Therefore,

λ(x) =

{
1, if x ≤ θ0,

exp
(
− 1

2σ2
0

[∑n
i=1(xi − θ0)

2 −
∑n

i=1(xi − x)2
])

, if x > θ0.

=

{
1, if x ≤ θ0,

exp
(
−n(x−θ0)

2

2σ2
0

)
, if x > θ0.

We find that the rejection region is:

C1 =

{
x : x > θ0 and exp

(
−n(x− θ0)

2

2σ2
0

)
≤ k < 1

}
=

{
x : x ≥ θ0 +

√
−2σ2

0

n
ln k = K ′

}
.

Since X ∼ N(θ,
σ2
0

n ), we can easily find that K ′ = θ0 + zα
σ0√
n
.

From Example 4.14, we have found that MLR holds for N(θ, σ2
0) in T = x. By the Karlin-Rubin Theorem, a test

with a rejection region:
C1 = {x : x ≥ K ′}

is a UMP one-sided right test for testing H0 : θ ≤ θ0 against H1 : θ > θ0 at a significance level of α. Therefore,
we have found the UMP one-sided test.

Recall the exponential family; it is also very useful in hypothesis testing.

Corollary 4.17. Let X = {X1, · · · , Xn} be a random sample of size n from a distribution belonging to a
one-parameter exponential family in the form:

exp[a(θ) + b(x) + c(θ)d(x)].

For the test at a significance level α of:{
H0 : θ ≤ θ0,

H1 : θ > θ0,
or

{
H0 : θ = θ0,

H1 : θ > θ0,

the test with a rejection region:

1. for an increasing function c(θ),

C1 =

{
x :

n∑
i=1

d(xi) ≥ K

}
,

2. for a decreasing function c(θ),

C1 =

{
x :

n∑
i=1

d(xi) ≤ K

}
,

is the UMP test at a significance level α for some K.
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Proof.
For θ′ > θ′′, the likelihood ratio is:

L(θ′)

L(θ′′)
= exp

[
n(a(θ′)− a(θ′′)) + (c(θ′)− c(θ′′))

n∑
i=1

d(xi)

]
.

If c(θ) is increasing, then c(θ′)− c(θ′′) > 0. We find that L(θ′)
L(θ′′) is non-decreasing in

∑n
i=1 d(xi). Therefore, by the

Karlin-Rubin Theorem, a test with a rejection region:

C1 =

{
x :

n∑
i=1

d(xi) ≥ K

}
is a UMP test at a significance level α for some K.

If c(θ) is decreasing, then c(θ′′) − c(θ′) < 0. We find that L(θ′)
L(θ′′) is non-decreasing in −

∑n
i=1 d(xi). Therefore, by

the Karlin-Rubin Theorem, a test with a rejection region:

C1 =

{
x : −

n∑
i=1

d(xi) ≥ K ′
}

=

{
x :

n∑
i=1

d(xi) ≤ −K ′ = K

}
is a UMP test at a significance level α for some K.

Example 4.16. Let {X1, · · · , Xn} be a random sample of size n from U[0, θ], where θ > 0 is unknown. We
want to construct a UMP test for testing: {

H0 : θ ≤ θ0,

H1 : θ > θ0,

at a significance level α, where θ0 > 0. From Example 3.7, we have found that X(n) is sufficient for θ with PDF:

fX(n)
(y|θ) = nyn−1

θn
1y≤θ.

For θ′ > θ′′, since it only has one term, we find the likelihood ratio of itself:

L(θ′)

L(θ′′)
=

fX(n)
(y|θ′)

fX(n)
(y|θ′′)

=

{(
θ′′

θ′

)n
< 1, if y ≤ θ′′,

∞, if θ′′ < y ≤ θ′.

This is non-decreasing in itself. Note that we only consider y ≤ θ′ since both L(θ′) and L(θ′′) would be zero if
y > θ′. Therefore, MLR holds in X(n) itself. By Theorem 4.16, a test with a rejection region:

C1 = {x : x(n) ≥ K}

is a UMP test for testing H0 : θ ≤ θ0 against H1 : θ > θ0 at a significance level α. To find K, we consider:

α = max
θ∈Θ0

P(X(n) ≥ K)

= max
θ∈Θ0

∫ θ

K

nyn−1

θn
dy

= max
θ∈Θ0

[
1−

(
K

θ

)n]
= 1−

(
K

θ0

)n

.

Therefore, we find that K = θ0 (1− α)
1
n .



Appendix A

Over-simplified Summary

Theorem A.1. (Weak Law of Large Numbers (WLLN)) Let {Xn} be a sequence of i.i.d. random variables.
Let E(Xi) = µ for all i = 1, 2, · · · . As n → ∞, we have:

X
D−→ µ

Theorem A.2. (Central Limit Theorem (CLT)) Let {Xn} be a sequence of i.i.d. random variables whose
MGFs exist on a neighborhood of 0. Let E(Xi) = µ and Var(Xi) = σ2 > 0 for all i = 1, 2, · · · . As n → ∞, we
have: √

n(X − µ)

σ
=

∑n
i=1 Xi − nµ√

nσ

D−→ N(0, 1)

Theorem A.3. (Lévy-Linderberg Central Limit Theorem) Let {Xn} be a sequence of i.i.d. random
variables with common population mean µ and population variance σ2. Assume that 0 < σ2 < ∞. As n → ∞,

√
n(X − µ)

σ
=

∑n
i=1 Xi − nµ√

nσ

D−→ N(0, 1)

Theorem A.4. (Slutsky’s Theorem) If Xn
D−→ X and Yn

P−→ c for some constant c, then:

1. Xn + Yn
D−→ X + c

2. XnYn
D−→ cX

3. Xn

Yn

D−→ X
c if c ̸= 0

Theorem A.5. (Continuous Mapping Theorem) Let {Xn} be a sequence of random variables and X be a
random variable. Suppose there is a function g with a set of discontinuity points Dg such that P(X ∈ Dg) = 0.
We have:

1. If Xn
D−→ X, then g(Xn)

D−→ g(X).

2. If Xn
P−→ X, then g(Xn)

P−→ g(X).

Theorem A.6. (Delta Method) Let {Xn} be a sequence of random variables such that for constants a and
b > 0, as n → ∞, √

n(Xn − a)
D−→ N(0, b2)

Then for a given function g, suppose that g′(a) exists and is not 0. As n → ∞:

√
n(g(Xn)− g(a))

D−→ N(0, [g′(a)b]2)

In particular, if {Xn} is a random sample of size n from a distribution with a finite mean µ and variance σ2 > 0,
such that g′(µ) exists and is not 0, then as n → ∞,

√
n(g(X)− g(µ))

D−→ N(0, [g′(µ)σ]2)

63



64 APPENDIX A. OVER-SIMPLIFIED SUMMARY

Theorem A.7. A sequence of MMEs {θ̃n ∈ Rk} is consistent, asymptotically unbiased for θ, and asymptotically

normally distributed. More precisely, under certain assumptions like E |X|2k < ∞, as n → ∞,

√
n(θ̃n − θ)

D−→ Nk(0,GHGT )

where G is a k× k matrix with ∂gi
∂µ′

j
as its (i, j)-th entry, and H is a k× k matrix with µ′

i+j −µ′
iµ

′
j as its (i, j)-th

entry, for i = 1, · · · , k and j = 1, · · · , k.

Theorem A.8. A sequence of MLEs {θ̂n ∈ Rk} is consistent, asymptotically unbiased for θ, asymptotically
efficient, and asymptotically normally distributed. More precisely, under regularity assumptions, as n → ∞,

√
n(θ̂n − θ)

D−→ Nk(0, I−1
X (θ))

where IX(θ) is the k × k Fisher Information matrix with the (i, j)-th entry defined as:E
[(

∂
∂θi

ln fX(X|θ)
)(

∂
∂θj

ln fX(X|θ)
)]

, Continuous case

E
[(

∂
∂θi

ln pX(X|θ)
)(

∂
∂θj

ln pX(X|θ)
)]

, Discrete case

for i = 1, · · · , k and j = 1, · · · , k.

Theorem A.9. (Fisher-Neyman Factorization Theorem) Let X = {X1, · · · , Xn} be a random sample of
size n from a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk. A set of statistics {S1, · · · , Sr}, where r ≥ k and
Si = Si(X) for i = 1, · · · , r, is jointly sufficient if and only if:{

pX(x|θ) = g(S1(x), · · · , Sr(x)|θ)h(x), Discrete case

fX(x|θ) = g(S1(x), · · · , Sr(x)|θ)h(x), Continuous case

where g is a non-negative function of x1, · · · , xn only through the statistics S1, · · · , Sr and depends on θ, and h
is a non-negative function of x1, · · · , xn not depending on θ.

Theorem A.10. (Rao-Blackwell Theorem) Let X = {X1, · · · , Xn} be a random sample of size n from a
PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk, and let {S1, · · · , Sr} be a set of jointly sufficient statistics,
where r ≥ k and Si = Si(X) for i = 1, · · · , r. Suppose that T = T (X) is an unbiased estimator for g(θ) for some
function g. Then:

1. E(T |S1, · · · , Sr) is a statistic and is a function of the jointly sufficient statistics.

2. E(T |S1, · · · , Sr) is unbiased for g(θ).

3. Var(E(T |S1, · · · , Sr)) ≤ Var(T ).

Theorem A.11. Let X = {X1, · · · , Xn} be a random sample of size n from a distribution in a one-parameter
exponential family with a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ R, in the form:

exp[a(θ) + b(x) + c(θ)d(x)].

Then,
∑n

i=1 d(Xi) is a complete and minimal sufficient statistic.

Theorem A.12. Let X = {X1, · · · , Xn} be a random sample of size n from a distribution in a one-parameter
exponential family with a PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ ⊂ Rk, in the form:

exp

a(θ) + b(x) +

k∑
j=1

cj(θ)dj(x)

 .

Then, the set {
∑n

i=1 d1(Xi), · · · ,
∑n

i=1 dk(Xi)} is a set of jointly complete and minimal sufficient statistics.

Theorem A.13. (Lehmann-Scheffé Theorem) Let CS be a complete and (minimal) sufficient statistic. If
there exists a function h(CS) that is unbiased for g(θ), then h(CS) is the unique UMVUE of g(θ). In particular,
if E[f(X)] = g(θ), then h(CS) = E[f(X)|CS] is the UMVUE for g(θ).
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Theorem A.14. (Cramér-Rao Inequality) Under the regularity conditions, the variance of an unbiased esti-
mator T (X) for θ, based on a set of random variablesX = {X1, · · · , Xn} from their joint PDF fX1,··· ,Xn(x1, · · · , xn|θ),
satisfies the following inequality:

Var(T (X)) ≥ 1

IX1,··· ,Xn
(θ)

=
1

E
[

d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ)
]2 ,

with the lower bound being the Cramér-Rao lower bound.
If T (X) is an unbiased estimator for g(θ), then it becomes:

Var(T (X)) ≥
[

d
dθg(θ)

]2
IX1,··· ,Xn

(θ)
=

[
d
dθg(θ)

]2
E
[

d
dθ ln fX1,··· ,Xn

(X1, · · · , Xn|θ)
]2 .

Equality holds if and only if:

d

dθ
ln fX1,··· ,Xn

(X1, · · · , Xn|θ) = A(θ, n)[T (X1, · · · , Xn)− g(θ)],

where A(θ, n) is a non-zero function. Thus, T (X1, · · · , Xn) would be the UMVUE of g(θ).

Theorem A.15. Under H0, the large-sample likelihood ratio test statistic follows an asymptotic χ2(1). We
reject H0 at a significance level α when:

xL > χ2
α,1.

Lemma A.16. (Neyman-Pearson Lemma) Let X = {X1, · · · , Xn} be a random sample of size n from a
PDF f(x|θ) or a PMF p(x|θ), where θ ∈ Θ = {θ0, θ1} and x is its realization. Then, at a significance level α, a
test with a rejection region:

C1 =

{
x :

L(θ0)

L(θ1)
≤ k

}
,

is the UMP test for testing H0 : θ = θ0 against H1 : θ = θ1, at a significance level α, where k > 0.

Theorem A.17. (Karlin-Rubin Theorem) Let X = {X1, · · · , Xn} be a random sample of size n from a
distribution with a parameter θ having MLR in T (x). At a significance level of α, a test with a rejection region:

C1 = {x : T (x) ≥ K},

is a UMP one-sided right test for: {
H0 : θ ≤ θ0,

H1 : θ > θ0,
or

{
H0 : θ = θ0,

H1 : θ > θ0,

at a significance level α for some K.

Theorem A.18. (Karlin-Rubin Theorem with sufficient statistic) Let X = {X1, · · · , Xn} be a random
sample from a distribution with a parameter θ, and let S(X) be a sufficient statistic for θ. If the distribution of
S(X) has MLR in itself, then at a significance level α, a test with a rejection region:

C1 = {x : S(x) ≥ K},

is a UMP one-sided right test for: {
H0 : θ ≤ θ0,

H1 : θ > θ0,
or

{
H0 : θ = θ0,

H1 : θ > θ0,

at a significance level α for some K.
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